메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 100-108

Space-time local embeddings

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; EMBEDDINGS; EUCLIDEAN SPACES; LOCAL INFORMATION; MANIFOLD LEARNING; NON-METRIC; SPACE TIME;

EID: 84965111255     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (17)
  • 1
    • 84894352938 scopus 로고
    • How many points in Euclidean space can have a common nearest neighbor?
    • K. Zeger and A. Gersho. How many points in Euclidean space can have a common nearest neighbor? In International Symposium on Information Theory, page 109, 1994.
    • (1994) International Symposium on Information Theory , pp. 109
    • Zeger, K.1    Gersho, A.2
  • 2
    • 84858338044 scopus 로고    scopus 로고
    • Visualizing non-metric similarities in multiple maps
    • L. van der Maaten and G. E. Hinton. Visualizing non-metric similarities in multiple maps. Machine Learning, 87(1):33-55, 2012.
    • (2012) Machine Learning , vol.87 , Issue.1 , pp. 33-55
    • Van Der Maaten, L.1    Hinton, G.E.2
  • 3
    • 33745428531 scopus 로고    scopus 로고
    • Feature discovery in non-metric pairwise data
    • Jul
    • J. Laub and K. R. Müller. Feature discovery in non-metric pairwise data. JMLR, 5(Jul):801-818, 2004.
    • (2004) JMLR , vol.5 , pp. 801-818
    • Laub, J.1    Müller, K.R.2
  • 4
    • 84898964829 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • MIT Press
    • G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In NIPS 15, pages 833-840. MIT Press, 2003.
    • (2003) NIPS 15 , pp. 833-840
    • Hinton, G.E.1    Roweis, S.T.2
  • 5
    • 84862287340 scopus 로고    scopus 로고
    • Visualizing similarity data with a mixture of maps
    • J. Cook, I. Sutskever, A. Mnih, and G. E. Hinton. Visualizing similarity data with a mixture of maps. In AISTATS'07, pages 67-74, 2007.
    • (2007) AISTATS'07 , pp. 67-74
    • Cook, J.1    Sutskever, I.2    Mnih, A.3    Hinton, G.E.4
  • 7
    • 77956007665 scopus 로고    scopus 로고
    • Spherical embeddings for non-Euclidean dissimilarities
    • R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. W. Duin. Spherical embeddings for non-Euclidean dissimilarities. In CVPR'10, pages 1903-1910, 2010.
    • (2010) CVPR'10 , pp. 1903-1910
    • Wilson, R.C.1    Hancock, E.R.2    Pekalska, E.3    Duin, R.P.W.4
  • 10
    • 0021644153 scopus 로고
    • A unified approach to pattern recognition
    • L. Goldfarb. A unified approach to pattern recognition. Pattern Recognition, 17(5):575-582, 1984.
    • (1984) Pattern Recognition , vol.17 , Issue.5 , pp. 575-582
    • Goldfarb, L.1
  • 12
    • 77958581102 scopus 로고    scopus 로고
    • Inducing metric violations in human similarity judgements
    • MIT Press
    • J. Laub, J. Macke, K. R. Müller, and F. A. Wichmann. Inducing metric violations in human similarity judgements. In NIPS 19, pages 777-784. MIT Press, 2007.
    • (2007) NIPS 19 , pp. 777-784
    • Laub, J.1    Macke, J.2    Müller, K.R.3    Wichmann, F.A.4
  • 13
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov.
    • L. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov):2579-2605, 2008.
    • (2008) JMLR , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.1    Hinton, G.E.2
  • 14
    • 84862286992 scopus 로고    scopus 로고
    • Spectral dimensionality reduction via maximum entropy
    • N. D. Lawrence. Spectral dimensionality reduction via maximum entropy. In AISTATS'11, JMLR W&CP 15, pages 51-59, 2011.
    • (2011) AISTATS'11, JMLR W&CP 15 , pp. 51-59
    • Lawrence, N.D.1
  • 15
    • 14344251006 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. In ICML'04, pages 839-846, 2004.
    • (2004) ICML'04 , pp. 839-846
    • Weinberger, K.Q.1    Sha, F.2    Saul, L.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.