-
1
-
-
84866688216
-
Measuring the objectness of image windows
-
Nov, 7
-
B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 34(11):2189-2202, Nov. 2012. 7
-
(2012)
PAMI
, vol.34
, Issue.11
, pp. 2189-2202
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
2
-
-
84911417279
-
Multiscale combinatorial grouping
-
1, 2, 7
-
P. Arbelaez, J. P. Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014. 1, 2, 7
-
(2014)
CVPR
-
-
Arbelaez, P.1
Tuset, J.P.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
3
-
-
80051773712
-
Branch and bound strategies for non-maximal suppression in object detection
-
1, 3, 5
-
M. Blaschko. Branch and bound strategies for non-maximal suppression in object detection. In EMM-CVPR, pages 385-398, 2011. 1, 3, 5
-
(2011)
EMM-CVPR
, pp. 385-398
-
-
Blaschko, M.1
-
4
-
-
56749161572
-
Learning to localize objects with structured output regression
-
2
-
M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008. 2
-
(2008)
ECCV
-
-
Blaschko, M.B.1
Lampert, C.H.2
-
5
-
-
84871947114
-
A tight (1/2) linear-time approximation to unconstrained submodular maximization
-
5
-
N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight (1/2) linear-time approximation to unconstrained submodular maximization. In FOCS, 2012. 5
-
(2012)
FOCS
-
-
Buchbinder, N.1
Feldman, M.2
Naor, J.3
Schwartz, R.4
-
7
-
-
77956008665
-
Constrained parametric min-cuts for automatic object segmentation
-
1, 2, 7
-
J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010. 1, 2, 7
-
(2010)
CVPR
-
-
Carreira, J.1
Sminchisescu, C.2
-
8
-
-
84911456915
-
Bing: Binarized normed gradients for objectness estimation at 300fps
-
1
-
M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. Bing: binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014. 1
-
(2014)
CVPR
-
-
Cheng, M.-M.1
Zhang, Z.2
Lin, W.-Y.3
Torr, P.4
-
9
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
1, 3
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1, 3
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
10
-
-
79959728283
-
Localizing objects while learning their appearance
-
1
-
T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010. 1
-
(2010)
ECCV
-
-
Deselaers, T.1
Alexe, B.2
Ferrari, V.3
-
11
-
-
84872307432
-
Contextual sequence prediction with application to control library optimization
-
3, 4
-
D. Dey, T. Liu, M. Hebert, and J. A. Bagnell. Contextual sequence prediction with application to control library optimization. In Robotics Science and Systems (RSS), 2012. 3, 4
-
(2012)
Robotics Science and Systems (RSS)
-
-
Dey, D.1
Liu, T.2
Hebert, M.3
Bagnell, J.A.4
-
12
-
-
0000988422
-
Branch-and-bound methods: A survey
-
2
-
E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations Research, 14(4):699-719, 1966. 2
-
(1966)
Operations Research
, vol.14
, Issue.4
, pp. 699-719
-
-
Lawler, E.L.1
Wood, D.E.2
-
13
-
-
84880644383
-
-
2, 6
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html. 2, 6
-
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
14
-
-
84880644383
-
-
2, 6
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html. 2, 6
-
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
15
-
-
46749125782
-
Maximizing non-monotone submodular functions
-
5
-
U. Feige, V. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. In FOCS, 2007. 5
-
(2007)
FOCS
-
-
Feige, U.1
Mirrokni, V.2
Vondrák, J.3
-
16
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
1, 3
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010. 1, 3
-
(2010)
PAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
17
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1, 3
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 3
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
18
-
-
84959186479
-
An active search strategy for efficient object detection
-
3
-
A. Gonzalez-Garcia, A. Vezhnevets, and V. Ferrari. An active search strategy for efficient object detection. In CVPR, 2015. 3
-
(2015)
CVPR
-
-
Gonzalez-Garcia, A.1
Vezhnevets, A.2
Ferrari, V.3
-
19
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
1, 3
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 3
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
85081111493
-
How good are detection proposals, really?
-
3, 7
-
J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really? In BMVC, 2014. 3, 7
-
(2014)
BMVC
-
-
Hosang, J.1
Benenson, R.2
Schiele, B.3
-
21
-
-
69549111057
-
Cutting-plane training of structural svms
-
2
-
T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural svms. Machine Learning, 77(1):27-59, 2009. 2
-
Machine Learning
, vol.77
, Issue.1
, pp. 27-592009
-
-
Joachims, T.1
Finley, T.2
Yu, C.-N.3
-
23
-
-
84959200010
-
Learning to propose objects
-
7
-
P. Krahenbuhl and V. Koltun. Learning to propose objects. In CVPR, 2015. 7
-
(2015)
CVPR
-
-
Krahenbuhl, P.1
Koltun, V.2
-
25
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
-
3
-
A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res., 9:235-284, 2008. 3
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
26
-
-
70350621774
-
Efficient subwindow search: A branch and bound framework for object localization
-
1, 2, 3, 4, 5
-
C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and bound framework for object localization. TPMAI, 31(12):2129-2142, 2009. 1, 2, 3, 4, 5
-
(2009)
TPMAI
, vol.31
, Issue.12
, pp. 2129-2142
-
-
Lampert, C.H.1
Blaschko, M.B.2
Hofmann, T.3
-
27
-
-
84859070008
-
A class of submodular functions for document summarization
-
3
-
H. Lin and J. Bilmes. A class of submodular functions for document summarization. In ACL, 2011. 3
-
(2011)
ACL
-
-
Lin, H.1
Bilmes, J.2
-
28
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
2, 6
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014. 2, 6
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
29
-
-
77951148076
-
Accelerated greedy algorithms for maximizing submodular set functions
-
2, 6
-
M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. Optimization Techniques, pages 234-243, 1978. 2, 6
-
(1978)
Optimization Techniques
, pp. 234-243
-
-
Minoux, M.1
-
30
-
-
0000095809
-
An analysis of approximations for maximizing submodular set functions
-
2, 3
-
G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978. 2, 3
-
(1978)
Mathematical Programming
, vol.14
, Issue.1
, pp. 265-294
-
-
Nemhauser, G.1
Wolsey, L.2
Fisher, M.3
-
31
-
-
84937919648
-
Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets
-
3
-
A. Prasad, S. Jegelka, and D. Batra. Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets. In NIPS, 2014. 3
-
(2014)
NIPS
-
-
Prasad, A.1
Jegelka, S.2
Batra, D.3
-
32
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
1
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015. 1
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
33
-
-
84897551647
-
Learning policies for contextual submodular prediction
-
4
-
S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell. Learning policies for contextual submodular prediction. In ICML, 2013. 4
-
(2013)
ICML
-
-
Ross, S.1
Zhou, J.2
Yue, Y.3
Dey, D.4
Bagnell, J.A.5
-
34
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
1
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014. 1
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
35
-
-
85047019092
-
An online algorithm for maximizing submodular functions
-
4
-
M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions. In NIPS, 2008. 4
-
(2008)
NIPS
-
-
Streeter, M.1
Golovin, D.2
-
36
-
-
84961630841
-
Scalable, high-quality object detection
-
1, 3
-
C. Szegedy, S. Reed, and D. Erhan. Scalable, high-quality object detection. In CVPR, 2014. 1, 3
-
(2014)
CVPR
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
-
37
-
-
84898989329
-
Deep neural networks for object detection
-
1
-
C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013. 1
-
(2013)
NIPS
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
39
-
-
84881160857
-
Selective search for object recognition
-
1, 2, 3, 6, 7
-
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. 1, 2, 3, 6, 7
-
(2013)
IJCV
-
-
Uijlings, J.1
Van De Sande, K.2
Gevers, T.3
Smeulders, A.4
-
40
-
-
2142812371
-
Robust real-time face detection
-
May, 1, 3
-
P. Viola and M. J. Jones. Robust real-time face detection. Int. J. Comput. Vision, 57(2):137-154, May 2004. 1, 3
-
(2004)
Int. J. Comput. Vision
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
-
41
-
-
84952018709
-
Edge boxes: Locating object proposals from edges
-
1, 2, 3, 4, 5, 7
-
C. Zitnick and P. Dollar. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 1, 2, 3, 4, 5, 7
-
(2014)
ECCV
-
-
Zitnick, C.1
Dollar, P.2
|