메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 379-387

Accelerated proximal gradient methods for nonconvex programming

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; GRADIENT METHODS; INFORMATION SCIENCE; LEARNING SYSTEMS; OPTIMIZATION;

EID: 84965105960     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (458)

References (26)
  • 3
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • 1, 7
    • T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. The Journal of Machine Learning Rearch, 11:1081-1107, 2010. 1, 7
    • (2010) The Journal of Machine Learning Rearch , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 4
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdeterminied linear systems via lq minimization for 0 < q κ 1
    • 1
    • S. Foucart and M. J. Lai. Sparsest solutions of underdeterminied linear systems via lq minimization for 0 < q κ 1. Applied and Computational Harmonic Analysis, 26(3):395-407, 2009. 1
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 395-407
    • Foucart, S.1    Lai, M.J.2
  • 5
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • 1
    • C. H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2):894-942, 2010. 1
    • (2010) The Annals of Statistics , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 6
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • 1
    • D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing, 4(7):932-946, 1995. 1
    • (1995) IEEE Transactions on Image Processing , vol.4 , Issue.7 , pp. 932-946
    • Geman, D.1    Yang, C.2
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • 1
    • J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001. 1
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 84870936812 scopus 로고    scopus 로고
    • Iterative reweighted algorithms for matrix rank minimization
    • 1, 2
    • K. Mohan and M. Fazel. Iterative reweighted algorithms for matrix rank minimization. The Journal of Machine Learning Research, 13(1):3441-3473, 2012. 1, 2
    • (2012) The Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 3441-3473
    • Mohan, K.1    Fazel, M.2
  • 9
    • 84965175140 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence O (1/k2)
    • 1
    • Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2). Soviet Mathematics Doklady, 27(2):372-376, 1983. 1
    • (1983) Soviet Mathematics Doklady , vol.27 , Issue.2 , pp. 372-376
    • Nesterov, Y.E.1
  • 10
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • 1
    • Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical programming, 103(1):127-152, 2005. 1
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.E.1
  • 11
    • 67651063011 scopus 로고    scopus 로고
    • Technical report, Center for Operations Research and Econometrics CORE, Catholie University of Louvain, 1
    • Y. E. Nesterov. Gradient methods for minimizing composite objective functions. Technical report, Center for Operations Research and Econometrics (CORE), Catholie University of Louvain, 2007. 1
    • (2007) Gradient Methods for Minimizing Composite Objective Functions
    • Nesterov, Y.E.1
  • 12
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • 1, 2, 3, 4, 5
    • A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419-2434, 2009. 1, 2, 3, 4, 5
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.11 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 13
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage thresholding algorithm for linear inverse problems
    • 1, 2, 3, 4, 5
    • A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems. SIAM J. Imaging Sciences, 2(1):183-202, 2009. 1, 2, 3, 4, 5
    • (2009) SIAM J. Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 16
    • 84877887498 scopus 로고    scopus 로고
    • Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
    • 2, 4, 5
    • H. Attouch, J. Bolte, and B. F. Svaier. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Mathematical Programming, 137:91-129, 2013. 2, 4, 5
    • (2013) Mathematical Programming , vol.137 , pp. 91-129
    • Attouch, H.1    Bolte, J.2    Svaier, B.F.3
  • 17
    • 84928780264 scopus 로고    scopus 로고
    • Splitting methods with variable metric for Kurdykałojasiewicz functions and general convergence rates
    • 2, 5
    • P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for Kurdykałojasiewicz functions and general convergence rates. Journal of Optimization Theory and Applications, 165:874-900, 2014. 2, 5
    • (2014) Journal of Optimization Theory and Applications , vol.165 , pp. 874-900
    • Frankel, P.1    Garrigos, G.2    Peypouquet, J.3
  • 18
    • 84903395655 scopus 로고    scopus 로고
    • IPiano: Inertial proximal algorithms for nonconvex optimization
    • 2
    • P. Ochs, Y. Chen, T. Brox, and T. Pock. IPiano: Inertial proximal algorithms for nonconvex optimization. SIAM J. Image Sciences, 7(2):1388-1419, 2014. 2
    • (2014) SIAM J. Image Sciences , vol.7 , Issue.2 , pp. 1388-1419
    • Ochs, P.1    Chen, Y.2    Brox, T.3    Pock, T.4
  • 19
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for nonconvex regularized optimization problems
    • 2, 7
    • P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm for nonconvex regularized optimization problems. In ICML, pages 37-45, 2013. 2, 7
    • (2013) ICML , pp. 37-45
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.4    Ye, J.5
  • 20
    • 84965115015 scopus 로고    scopus 로고
    • Gradient descent with proximal average for nonconvex and composite regularization
    • 2
    • W. Zhong and J. Kwok. Gradient descent with proximal average for nonconvex and composite regularization. In AAAI, 2014. 2
    • (2014) AAAI
    • Zhong, W.1    Kwok, J.2
  • 21
    • 84965144462 scopus 로고    scopus 로고
    • On iteratively reweighted algorithms for non-smooth non-convex optimization in computer vision
    • 2
    • P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock. On iteratively reweighted algorithms for non-smooth non-convex optimization in computer vision. SIAM J. Imaging Sciences, 2014. 2
    • (2014) SIAM J. Imaging Sciences
    • Ochs, P.1    Dosovitskiy, A.2    Brox, T.3    Pock, T.4
  • 23
    • 84905580784 scopus 로고    scopus 로고
    • Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    • 3, 5
    • J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459-494, 2014. 3, 5
    • (2014) Mathematical Programming , vol.146 , Issue.1-2 , pp. 459-494
    • Bolte, J.1    Sabach, S.2    Teboulle, M.3
  • 24
    • 9944262108 scopus 로고    scopus 로고
    • A nonmonotone line search technique and its application to unconstrained optimization
    • 5, 6
    • H. Zhang and W. W. Hager. A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optimization, 14:1043-1056, 2004. 5, 6
    • (2004) SIAM J. Optimization , vol.14 , pp. 1043-1056
    • Zhang, H.1    Hager, W.W.2
  • 25
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • 7
    • S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17):2246-2253, 2003. 7
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 26
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • 7
    • A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization. Technometrics, 49(14):291-304, 2007. 7
    • (2007) Technometrics , vol.49 , Issue.14 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.