-
1
-
-
84870950494
-
-
B.J. Dahlen, J.A. Konstan, J. Herlocker, N. Good, A. Borchers, and J. Riedl. "Movie lens data". 1998. http://www.grouplens.org/node/73.
-
(1998)
Movie Lens Data
-
-
Dahlen, B.J.1
Konstan, J.A.2
Herlocker, J.3
Good, N.4
Borchers, A.5
Riedl, J.6
-
4
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J.F. Cai, E.J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. On Optimization, 20(4):1956-1982, 2008.
-
(2008)
SIAM J. On Optimization
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.F.1
Candes, E.J.2
Shen, Z.3
-
8
-
-
79960675858
-
Robust principal component analysis?
-
E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3), 2011.
-
(2011)
Journal of the ACM
, vol.58
, Issue.3
-
-
Candes, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
12
-
-
79960591511
-
Rank-sparsity incoherence for matrix decomposition
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572-596, 2011.
-
(2011)
SIAM Journal on Optimization
, vol.212
, pp. 572-596
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
13
-
-
44449127493
-
Restricted isometry properties and nonconvex compressive sensing
-
035020
-
R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 24(035020):1-14, 2008.
-
(2008)
Inverse Problems
, vol.24
, pp. 1-14
-
-
Chartrand, R.1
Staneva, V.2
-
15
-
-
77949704355
-
Iteratively re-weighted least squares minimization for sparse recovery
-
I. Daubechies, R. DeVore, M. Fornasier, and C.S. Gunturk. Iteratively re-weighted least squares minimization for sparse recovery. Commun. Pure Appl. Math, 63(1):1-38, 2010.
-
(2010)
Commun. Pure Appl. Math
, vol.63
, Issue.1
, pp. 1-38
-
-
Daubechies, I.1
DeVore, R.2
Fornasier, M.3
Gunturk, C.S.4
-
16
-
-
33751075906
-
Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
-
DOI 10.1137/S0097539704442696
-
P. Drineas, R. Kannan, andM.W.Mahoney. Fast monte carlo algorithms for matrices ii: Computing a low rank approximation to a matrix. SIAM Journal on Computing, 36:158-183, 2006. (Pubitemid 46374022)
-
(2006)
SIAM Journal on Computing
, vol.36
, Issue.1
, pp. 158-183
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
17
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
Arlington, VA
-
M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proc. American Control Conference, Arlington, VA, 2001.
-
(2001)
Proc. American Control Conference
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
18
-
-
0142215333
-
Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices
-
Denver, CO
-
M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proc. American Control Conference, pages 2156-2162, Denver, CO, 2003.
-
(2003)
Proc. American Control Conference
, pp. 2156-2162
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
19
-
-
84856046837
-
Low-rank matrix recovery via iteratively reweighted least squares minimization
-
M. Fornasier, H. Rauhut, and R. Ward. Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM Journal of Optimization, 21(4), 2011.
-
(2011)
SIAM Journal of Optimization
, vol.21
, Issue.4
-
-
Fornasier, M.1
Rauhut, H.2
Ward, R.3
-
21
-
-
71149117997
-
Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
-
R. Garg and R. Khandekar. Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property. In Proc. Of 26th Intl. Conf. On Machine Learning (ICML), 2009.
-
(2009)
Proc. Of 26th Intl. Conf. On Machine Learning (ICML)
-
-
Garg, R.1
Khandekar, R.2
-
22
-
-
79952483985
-
Convergence of fixed point continuation algorithms for matrix rank minimization
-
D. Goldfarb and S. Ma. Convergence of fixed point continuation algorithms for matrix rank minimization. Foundations of Computational Mathematics, 11(2), 2011.
-
(2011)
Foundations of Computational Mathematics
, vol.11
, Issue.2
-
-
Goldfarb, D.1
Ma, S.2
-
23
-
-
84870876408
-
-
Available at
-
D. Goldfarb and S. Ma. FPCA code. 2009. Available at http://www.columbia. edu/?sm2756/FPCA.htm.
-
(2009)
FPCA Code
-
-
Goldfarb, D.1
Ma, S.2
-
24
-
-
77957565242
-
Quantum state tomography via compressed sensing
-
D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via compressed sensing. Physical Review Letters, 105, 2010
-
(2010)
Physical Review Letters
, pp. 105
-
-
Gross, D.1
Liu, Y.K.2
Flammia, S.T.3
Becker, S.4
Eisert, J.5
-
25
-
-
79960425522
-
Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
30
-
-
77949641792
-
Low-rank matrix completion with noisy observations: A quantitative comparison
-
R. H. Keshavan, A. Montanari, and S. Oh. Low-rank matrix completion with noisy observations: a quantitative comparison. In Proc. 47th Annual Allerton Conference on Communication, Control, and Computing, 2009b.
-
(2009)
Proc. 47th Annual Allerton Conference on Communication, Control, and Computing
-
-
Keshavan, R.H.1
Montanari, A.2
Oh, S.3
-
31
-
-
77955747588
-
Admira: Atomic decomposition for minimum rank approximation
-
K. Lee and Y. Bresler. Admira: Atomic decomposition for minimum rank approximation. IEEE Tran. Info. Theory, 56(9), 2010.
-
(2010)
IEEE Tran. Info. Theory
, vol.56
, Issue.9
-
-
Lee, K.1
Bresler, Y.2
-
32
-
-
0030205038
-
Derivatives of spectral functions
-
A.S. Lewis. Derivatives of spectral functions. Mathematics of Operations Research, 21(3):576-588, 1996.
-
(1996)
Mathematics of Operations Research
, vol.21
, Issue.3
, pp. 576-588
-
-
Lewis, A.S.1
-
33
-
-
72549110327
-
Interior-point method for nuclear norm approximation with application to system identification
-
Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to system identification. SIAM J. Matrix Analysis and Appl., 31(3), 2008.
-
(2008)
SIAM J. Matrix Analysis and Appl
, vol.31
, Issue.3
-
-
Liu, Z.1
Vandenberghe, L.2
-
34
-
-
33847366224
-
Portfolio optimization with linear and fixed transaction costs
-
M. S. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152:341-365, 2006.
-
(2006)
Annals of Operations Research
, vol.152
, pp. 341-365
-
-
Lobo, M.S.1
Fazel, M.2
Boyd, S.3
-
38
-
-
77957812855
-
Reweighted nuclear norm minimization with application to system identification
-
Baltimore, MA
-
K. Mohan and M. Fazel. Reweighted nuclear norm minimization with application to system identification. In Proc. American Control Conference, Baltimore, MA, 2010a.
-
(2010)
Proc. American Control Conference
-
-
Mohan, K.1
Fazel, M.2
-
41
-
-
62749175137
-
Cosamp: Iterative signal recovery from incomplete and inaccurate samples
-
D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-321, 2008.
-
(2008)
Applied and Computational Harmonic Analysis
, vol.26
, Issue.3
, pp. 301-321
-
-
Needell, D.1
Tropp, J.A.2
-
46
-
-
84863072011
-
Face recovery in conference video streaming using robust principal component analysis
-
W. Tan, G. Cheung, and Y. Ma. Face recovery in conference video streaming using robust principal component analysis. In Proc. IEEE Intl. Conf. On Image Processing, 2011.
-
(2011)
Proc. IEEE Intl. Conf. On Image Processing
-
-
Tan, W.1
Cheung, G.2
Ma, Y.3
-
47
-
-
78049448383
-
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problem
-
K. C. Toh and S. W. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problem. Pacific Journal of Optimization, 6:615-640, 2010.
-
(2010)
Pacific Journal of Optimization
, vol.6
, pp. 615-640
-
-
Toh, K.C.1
Yun, S.W.2
-
49
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research, 11:1081-1107, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1081-1107
-
-
Zhang, T.1
|