메뉴 건너뛰기




Volumn 291, Issue 16, 2016, Pages 8735-8744

The proliferating cell nuclear antigen (PCNA)-interacting Protein (PIP) motif of DNA polymerase η Mediates Its interaction with the C-terminal domain of Rev1

Author keywords

[No Author keywords available]

Indexed keywords

ANTIGENS; BINS; CELL PROLIFERATION; DNA; HYDROPHOBICITY; PROTEINS; SCAFFOLDS (BIOLOGY); YEAST;

EID: 84965031466     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M115.697938     Document Type: Article
Times cited : (44)

References (57)
  • 1
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan, G. L., Pfander, B., and Jentsch, S. (2007) PCNA, the maestro of the replication fork. Cell 129, 665-679
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 2
    • 84875398809 scopus 로고    scopus 로고
    • PCNA structure and function: Insights from structures of PCNA complexes and post-translationally modified PCNA
    • Dieckman, L. M., Freudenthal, B.D., and Washington, M. T. (2012) PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. Subcell. Biochem. 62, 281-299
    • (2012) Subcell. Biochem , vol.62 , pp. 281-299
    • Dieckman, L.M.1    Freudenthal, B.D.2    Washington, M.T.3
  • 3
    • 0028618183 scopus 로고
    • Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA
    • Krishna, T. S., and Kong., X. P., Gary, S., Burgers, P. M., and Kuriyan, J. (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233-1243
    • (1994) Cell , vol.79 , pp. 1233-1243
    • Krishna, T.S.1    Kong, X.P.2    Gary, S.3    Burgers, P.M.4    Kuriyan, J.5
  • 4
    • 0039710446 scopus 로고    scopus 로고
    • Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen
    • Jónsson, Z. O., Hindges, R., and Hübscher, U. (1998) Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 17, 2412-2425
    • (1998) EMBO J , vol.17 , pp. 2412-2425
    • Jónsson, Z.O.1    Hindges, R.2    Hübscher, U.3
  • 5
    • 0033777562 scopus 로고    scopus 로고
    • The puzzle of PCNA's many partners
    • Warbrick, E. (2000) The puzzle of PCNA's many partners. Bioessays 22, 997-1006
    • (2000) Bioessays , vol.22 , pp. 997-1006
    • Warbrick, E.1
  • 6
    • 0041885325 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen (PCNA): A dancer with many partners
    • Maga, G., and Hubscher, U. (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116, 3051-3060
    • (2003) J. Cell Sci , vol.116 , pp. 3051-3060
    • Maga, G.1    Hubscher, U.2
  • 7
    • 0034852569 scopus 로고    scopus 로고
    • Interaction with PCNA is essential for yeast DNA polymerase 17 function
    • Haracska, L., and Kondratick., C. M., Unk, I., Prakash, S., and Prakash, L. (2001) Interaction with PCNA is essential for yeast DNA polymerase 17 function. Mol. Cell 8, 407-415
    • (2001) Mol. Cell , vol.8 , pp. 407-415
    • Haracska, L.1    Kondratick, C.M.2    Unk, I.3    Prakash, S.4    Prakash, L.5
  • 14
    • 21244506437 scopus 로고    scopus 로고
    • Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function
    • Prakash, S., and Johnson., R. E., and Prakash, L. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317-353
    • (2005) Annu. Rev. Biochem , vol.74 , pp. 317-353
    • Prakash, S.1    Johnson, R.E.2    Prakash, L.3
  • 16
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale, J. E., and Lehmann., A. R., and Woodgate, R. (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13, 141-152
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 141-152
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 17
    • 0033548231 scopus 로고    scopus 로고
    • Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, poleta
    • Johnson, R. E., Prakash, S., and Prakash, L. (1999) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283, 1001-1004
    • (1999) Science , vol.283 , pp. 1001-1004
    • Johnson, R.E.1    Prakash, S.2    Prakash, L.3
  • 18
    • 0034425754 scopus 로고    scopus 로고
    • Efficient and accurate replication in the presence of 7, 8-dihydro-8-oxoguanine by DNA polymerase η
    • Haracska, L., and Yu., S. L., Johnson, R. E., Prakash, L., and Prakash, S. (2000) Efficient and accurate replication in the presence of 7, 8-dihydro-8-oxoguanine by DNA polymerase η. Nat. Genet. 25, 458-461
    • (2000) Nat. Genet , vol.25 , pp. 458-461
    • Haracska, L.1    Yu, S.L.2    Johnson, R.E.3    Prakash, L.4    Prakash, S.5
  • 19
    • 0033538470 scopus 로고    scopus 로고
    • hRAD30 mutations in the variant form of xeroderma pigmentosum
    • Johnson, R. E., Kondratick, C M., Prakash, S., and Prakash, L. (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263-265
    • (1999) Science , vol.285 , pp. 263-265
    • Johnson, R.E.1    Kondratick, C.M.2    Prakash, S.3    Prakash, L.4
  • 21
    • 0029787108 scopus 로고    scopus 로고
    • Deoxycytidyl transferase activity of yeast REV1 protein
    • Nelson, J. R., and Lawrence., C. W., and Hinkle, D. C. (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729-731
    • (1996) Nature , vol.382 , pp. 729-731
    • Nelson, J.R.1    Lawrence, C.W.2    Hinkle, D.C.3
  • 22
    • 3542992656 scopus 로고    scopus 로고
    • Efficient and errorfree replication past a minor-groove N2-guanine adduct by the sequential action of yeast rev1 and DNA polymerase ζ
    • Washington, M. T., and Minko., I. G., Johnson, R. E., Haracska, L., Harris, T. M., and Lloyd., R. S., Prakash, S., and Prakash, L. (2004) Efficient and errorfree replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase ζ. Mol. Cell. Biol. 24, 6900-6906
    • (2004) Mol. Cell. Biol , vol.24 , pp. 6900-6906
    • Washington, M.T.1    Minko, I.G.2    Johnson, R.E.3    Haracska, L.4    Harris, T.M.5    Lloyd, R.S.6    Prakash, S.7    Prakash, L.8
  • 23
    • 0037013287 scopus 로고    scopus 로고
    • Yeast rev1 protein is a G template-specific DNA polymerase
    • Haracska, L., Prakash, S., and Prakash, L. (2002) Yeast Rev1 protein is a G template-specific DNA polymerase. J. Biol. Chem. 277, 15546-15551
    • (2002) J. Biol. Chem , vol.277 , pp. 15546-15551
    • Haracska, L.1    Prakash, S.2    Prakash, L.3
  • 24
    • 80054717105 scopus 로고    scopus 로고
    • Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast rev1 protein
    • Pryor, J. M., and Washington, M. T. (2011) Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein. DNA Repair 10, 1138-1144
    • (2011) DNA Repair , vol.10 , pp. 1138-1144
    • Pryor, J.M.1    Washington, M.T.2
  • 27
    • 0345732688 scopus 로고    scopus 로고
    • Mouse rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
    • Guo, C, and Fischhaber., P. L., Luk-Paszyc, M. J., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C, and Friedberg, E. C. (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBOJ. 22, 6621-6630
    • (2003) EMBOJ , vol.22 , pp. 6621-6630
    • Guo, C.1    Fischhaber, P.L.2    Luk-Paszyc, M.J.3    Masuda, Y.4    Zhou, J.5    Kamiya, K.6    Kisker, C.7    Friedberg, E.C.8
  • 29
    • 36849015797 scopus 로고    scopus 로고
    • Complex formation of yeast rev1 with DNA polymerase eta
    • Acharya, N., Haracska, L., Prakash, S., and Prakash, L. (2007) Complex formation of yeast Rev1 with DNA polymerase eta. Mol. Cell. Biol. 27, 8401-8408
    • (2007) Mol. Cell. Biol , vol.27 , pp. 8401-8408
    • Acharya, N.1    Haracska, L.2    Prakash, S.3    Prakash, L.4
  • 31
    • 84863739595 scopus 로고    scopus 로고
    • NMR structure and dynamics of the C-terminal domain from human rev1 and its complex with rev1 interacting region of DNA polymerase η
    • Pozhidaeva, A., Pustovalova, Y., D'Souza, S., Bezsonova, I., Walker, G. C, and Korzhnev, D. M. (2012) NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 51, 5506-5520
    • (2012) Biochemistry , vol.51 , pp. 5506-5520
    • Pozhidaeva, A.1    Pustovalova, Y.2    D'Souza, S.3    Bezsonova, I.4    Walker, G.C.5    Korzhnev, D.M.6
  • 32
    • 84866948407 scopus 로고    scopus 로고
    • Structural basis of rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of rev1, heterodimeric polymerase (Pol) ζ, and pol κ
    • Wojtaszek, J., and Lee., C. J., D'Souza, S., Minesinger, B., Kim, H, DAndrea, A. D., Walker, G. C, and Zhou, P. (2012) Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ. J. Biol. Chem. 287, 33836-33846
    • (2012) J. Biol. Chem , vol.287 , pp. 33836-33846
    • Wojtaszek, J.1    Lee, C.J.2    D'Souza, S.3    Minesinger, B.4    Kim, H.5    D'Andrea, A.D.6    Walker, G.C.7    Zhou, P.8
  • 33
    • 84864383681 scopus 로고    scopus 로고
    • Multifaceted recognition of vertebrate rev1 by translesion polymerases ζ and κ
    • Wojtaszek, J., Liu, J., D'Souza, S., Wang, S., Xue, Y., Walker, G. C, and Zhou, P. (2012) Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ. J. Biol. Chem. 287, 26400-26408
    • (2012) J. Biol. Chem , vol.287 , pp. 26400-26408
    • Wojtaszek, J.1    Liu, J.2    D'Souza, S.3    Wang, S.4    Xue, Y.5    Walker, G.C.6    Zhou, P.7
  • 34
    • 0035966270 scopus 로고    scopus 로고
    • Yeast DNA polymerase 17 utilizes an induced-fit mechanism of nucleotide incorporation
    • Washington, M. T., Prakash, L., and Prakash, S. (2001) Yeast DNA polymerase 17 utilizes an induced-fit mechanism of nucleotide incorporation. Cell 107, 917-927
    • (2001) Cell , vol.107 , pp. 917-927
    • Washington, M.T.1    Prakash, L.2    Prakash, S.3
  • 36
    • 57649128297 scopus 로고    scopus 로고
    • Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis
    • Freudenthal, B. D., Ramaswamy, S., Hingorani, M. M., and Washington, M. T. (2008) Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 47, 13354-13361
    • (2008) Biochemistry , vol.47 , pp. 13354-13361
    • Freudenthal, B.D.1    Ramaswamy, S.2    Hingorani, M.M.3    Washington, M.T.4
  • 37
    • 84882577219 scopus 로고    scopus 로고
    • Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair
    • Dieckman, L. M., and Boehm., E. M., Hingorani, M. M., and Washington, M. T. (2013) Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair. Biochemistry 52, 5611-5619
    • (2013) Biochemistry , vol.52 , pp. 5611-5619
    • Dieckman, L.M.1    Boehm, E.M.2    Hingorani, M.M.3    Washington, M.T.4
  • 38
    • 84855169724 scopus 로고    scopus 로고
    • A high-throughput solid-phase microplate protein-binding assay to investigate interactions between myofilament proteins
    • Biesiadecki, B. J., and Jin, J. P. (2011) A high-throughput solid-phase microplate protein-binding assay to investigate interactions between myofilament proteins. J. Biomed. Biotechnol. 2011, 421701
    • (2011) J. Biomed. Biotechnol , vol.2011
    • Biesiadecki, B.J.1    Jin, J.P.2
  • 39
    • 84907867363 scopus 로고    scopus 로고
    • Direct correlation of DNA binding and single protein domain motion via dual illumination fluorescence microscopy
    • Ghoneim, M., and Spies, M. (2014) Direct correlation of DNA binding and single protein domain motion via dual illumination fluorescence microscopy. Nano Lett. 14, 5920-5931
    • (2014) Nano Lett , vol.14 , pp. 5920-5931
    • Ghoneim, M.1    Spies, M.2
  • 40
    • 69749086880 scopus 로고    scopus 로고
    • Singlemolecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase
    • Honda, M., Park, J., Pugh, R. A., Ha, T., and Spies, M. (2009) Singlemolecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase. Mol. Cell 35, 694-703
    • (2009) Mol. Cell , vol.35 , pp. 694-703
    • Honda, M.1    Park, J.2    Pugh, R.A.3    Ha, T.4    Spies, M.5
  • 41
    • 84876021636 scopus 로고    scopus 로고
    • Single-molecule sorting reveals how ubiquitylation affects substrate recognition and activities of FBH1 helicase
    • Masuda-Ozawa, T., Hoang, T., and Seo., Y. S., Chen, L. F., and Spies, M. (2013) Single-molecule sorting reveals how ubiquitylation affects substrate recognition and activities of FBH1 helicase. Nucleic Acids Res. 41, 3576-3587
    • (2013) Nucleic Acids Res , vol.41 , pp. 3576-3587
    • Masuda-Ozawa, T.1    Hoang, T.2    Seo, Y.S.3    Chen, L.F.4    Spies, M.5
  • 42
    • 84880523180 scopus 로고    scopus 로고
    • Single-molecule study of the CUG repeat-MBNL1 interaction and its inhibition by small molecules
    • Haghighat Jahromi, A., Honda, M., Zimmerman, S. C, and Spies, M. (2013) Single-molecule study of the CUG repeat-MBNL1 interaction and its inhibition by small molecules. Nucleic Acids Res. 41, 6687-6697
    • (2013) Nucleic Acids Res , vol.41 , pp. 6687-6697
    • Haghighat Jahromi, A.1    Honda, M.2    Zimmerman, S.C.3    Spies, M.4
  • 43
    • 67749103813 scopus 로고    scopus 로고
    • On the mechanism of trolox as antiblinking and antibleaching reagent
    • Cordes, T., Vogelsang, J., and Tinnefeld, P. (2009) On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018-5019
    • (2009) J. Am. Chem. Soc , vol.131 , pp. 5018-5019
    • Cordes, T.1    Vogelsang, J.2    Tinnefeld, P.3
  • 44
    • 83655164333 scopus 로고    scopus 로고
    • Detecting intramolecular conformational dynamics of single molecules in short distance range with subnanometer sensitivity
    • Zhou, R., Kunzelmann, S., Webb, M. R., and Ha, T. (2011) Detecting intramolecular conformational dynamics of single molecules in short distance range with subnanometer sensitivity. Nano Lett. 11, 5482-5488
    • (2011) Nano Lett , vol.11 , pp. 5482-5488
    • Zhou, R.1    Kunzelmann, S.2    Webb, M.R.3    Ha, T.4
  • 45
    • 84965018569 scopus 로고    scopus 로고
    • New developments in the QUB software for single-channel data analysis
    • Milescu, L. S., and Nicolai., C. L., Qin, F., and Sachs, F. (2002) New developments in the QUB software for single-channel data analysis. Biophys. J. 82, 267A-267A
    • (2002) Biophys. J , vol.82 , pp. 267A-267A
    • Milescu, L.S.1    Nicolai, C.L.2    Qin, F.3    Sachs, F.4
  • 47
    • 32144432437 scopus 로고    scopus 로고
    • The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling
    • Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201
    • (2006) Bioinformatics , vol.22 , pp. 195-201
    • Arnold, K.1    Bordoli, L.2    Kopp, J.3    Schwede, T.4
  • 49
    • 69249212321 scopus 로고    scopus 로고
    • Automated comparative protein structure modeling with SWISS-MODEL and swiss-pdbviewer: A historical perspective
    • Guex, N., Peitsch, M. C, and Schwede, T. (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30, S162-S173
    • (2009) Electrophoresis , vol.30 , pp. S162-S173
    • Guex, N.1    Peitsch, M.C.2    Schwede, T.3
  • 50
    • 67449103688 scopus 로고    scopus 로고
    • Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen
    • Hishiki, A., Hashimoto, H., Hanafusa, T., Kamei, K., Ohashi, E., Shimizu, T., Ohmori, H., and Sato, M. (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem. 284, 10552-10560
    • (2009) J. Biol. Chem , vol.284 , pp. 10552-10560
    • Hishiki, A.1    Hashimoto, H.2    Hanafusa, T.3    Kamei, K.4    Ohashi, E.5    Shimizu, T.6    Ohmori, H.7    Sato, M.8
  • 51
    • 84888128365 scopus 로고    scopus 로고
    • XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair
    • Gabel, S. A., and DeRose., E. F., and London, R. E. (2013) XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair. DNA Repair 12, 1105-1113
    • (2013) DNA Repair , vol.12 , pp. 1105-1113
    • Gabel, S.A.1    DeRose, E.F.2    London, R.E.3
  • 53
    • 77951245006 scopus 로고    scopus 로고
    • MutLa and proliferating cell nuclear antigen share binding sites on MutSbeta
    • Iyer, R. R., Pluciennik, A., Genschel, J., Tsai, M. S., and Beese., L. S., and Modrich, P. (2010) MutLa and proliferating cell nuclear antigen share binding sites on MutSbeta. J. Biol. Chem. 285, 11730-11739
    • (2010) J. Biol. Chem , vol.285 , pp. 11730-11739
    • Iyer, R.R.1    Pluciennik, A.2    Genschel, J.3    Tsai, M.S.4    Beese, L.S.5    Modrich, P.6
  • 54
    • 0037119357 scopus 로고    scopus 로고
    • Ntg2p, a saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein mlh1p: Identification of a mlh1p binding motif
    • Gellon, L., Werner, M., and Boiteux, S. (2002) Ntg2p, a Saccharomyces cerevisiae DNA N-glycosylase/apurinic or apyrimidinic lyase involved in base excision repair of oxidative DNA damage, interacts with the DNA mismatch repair protein Mlh1p: identification of a Mlh1p binding motif. J. Biol. Chem. 277, 29963-29972
    • (2002) J. Biol. Chem , vol.277 , pp. 29963-29972
    • Gellon, L.1    Werner, M.2    Boiteux, S.3
  • 57
    • 34247112704 scopus 로고    scopus 로고
    • The C-terminal domain of yeast PCNA is required for physical and functional interactions with cdc9 DNA ligase
    • Vijayakumar, S., and Chapados., B. R., Schmidt, K. H., Kolodner, R. D., and Tainer., J. A., and Tomkinson, A. E. (2007) The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res. 35, 1624-1637
    • (2007) Nucleic Acids Res , vol.35 , pp. 1624-1637
    • Vijayakumar, S.1    Chapados, B.R.2    Schmidt, K.H.3    Kolodner, R.D.4    Tainer, J.A.5    Tomkinson, A.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.