메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 157-169

Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests

Author keywords

Hyperspectral images; Image classification; Mediterranean areas; Multivariate adaptive regression splines; Random forest; Support vector machine

Indexed keywords

DECISION TREES; FORESTRY; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; MAPPING; MAPS; RANDOM FORESTS; SPECTROSCOPY; SPLINES; SUPPORT VECTOR REGRESSION;

EID: 84964834993     PISSN: None     EISSN: 22797254     Source Type: Journal    
DOI: 10.5721/EuJRS20164909     Document Type: Article
Times cited : (24)

References (34)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. (2001)-Random Forests. Machine Learning, 45: 5-32. doi: http: //dx. doi. org/10. 1023/A: 1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges C. J. C. (1998)-A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2: 121-167. doi: http: //dx. doi. org/10. 1023/A: 1009715923555.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost treebased ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan J. C. W., Palinckx D. (2008)-Evaluation of Random Forest and Adaboost treebased ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112: 2999-3011. doi: http: // dx. doi. org/10. 1016/j. rse. 2008. 02. 011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, J.C.W.1    Palinckx, D.2
  • 4
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark M. L., Roberts D. A., Clark D. B. (2005)-Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96: 375-398. doi: http: //dx. doi. org/10. 1016/j. rse. 2005. 03. 009.
    • (2005) Remote Sensing of Environment , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 5
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classification of Remotely Sensed Data
    • Congalton R. G. (1991)-A Review of Assessing the Accuracy of Classification of Remotely Sensed Data. Remote Sensing of Environment, 37: 35-46. doi: http: //dx. doi. org/10. 1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 6
    • 84949519191 scopus 로고    scopus 로고
    • Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems
    • Corona P. (2016)-Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental Research, 144: 8-14. doi: http: //dx. doi. org/10. 1016/j. envres. 2015. 10. 017.
    • (2016) Environmental Research , vol.144 , pp. 8-14
    • Corona, P.1
  • 7
    • 85050405578 scopus 로고    scopus 로고
    • Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories
    • Corona P., Fattorini L., Pagliarella M. C. (2015)-Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories. Forest Ecosystems, 2: 18. doi: http: //dx. doi. org/10. 1186/s40663-015-0042-7.
    • (2015) Forest Ecosystems , vol.2 , pp. 18
    • Corona, P.1    Fattorini, L.2    Pagliarella, M.C.3
  • 8
    • 70349172947 scopus 로고    scopus 로고
    • The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas
    • Dalponte M., Bruzzone L., Vescovo L., Gianelle D. (2009)-The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sensing of Environment, 113: 2345-2355. doi: http: //dx. doi. org/10. 1016/j. rse. 2009. 06. 013.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 2345-2355
    • Dalponte, M.1    Bruzzone, L.2    Vescovo, L.3    Gianelle, D.4
  • 9
    • 1942439885 scopus 로고    scopus 로고
    • Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
    • Erbek F. S., Ozkan C., Taberner M. (2004)-Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. International Journal of Remote Sensing, 25: 1733-1748. doi: http: //dx. doi. or g/10. 1080/0143116031000150077.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 1733-1748
    • Erbek, F.S.1    Ozkan, C.2    Taberner, M.3
  • 10
    • 0002432565 scopus 로고
    • Multivariate Adaptive Regression Splines
    • Friedman J. H. (1991)-Multivariate Adaptive Regression Splines. The Annals of Statistics, 19 (1): 1-141. doi: http: //dx. doi. org/10. 1214/aos/1176347963.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 13
    • 84964853112 scopus 로고    scopus 로고
    • ITT Industries, Inc., Boulder, CO
    • ITT (2008)-ENVI Version 4. 8. ITT Industries, Inc., Boulder, CO.
    • (2008) ENVI Version 4. 8
    • ITT1
  • 14
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu T., Colkesen I. (2009)-A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11: 352-359. doi: http: //dx. doi. org/10. 1016/j. jag. 2009. 06. 002.
    • (2009) International Journal of Applied Earth Observation and Geoinformation , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 15
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence R. L., Bunn A., Powell S., Zmabon M. (2004)-Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90: 331-336. doi: http: //dx. doi. org/10. 1016/j. rse. 2004. 01. 007.
    • (2004) Remote Sensing of Environment , vol.90 , pp. 331-336
    • Lawrence, R.L.1    Bunn, A.2    Powell, S.3    Zmabon, M.4
  • 16
    • 84942543920 scopus 로고    scopus 로고
    • The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection
    • Lawrence R. L., Moran C. J. (2015)-The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection. Remote Sensing of Environment, 170: 115-120. doi: http: //dx. doi. org/10. 1016/j. rse. 2015. 09. 008.
    • (2015) Remote Sensing of Environment , vol.170 , pp. 115-120
    • Lawrence, R.L.1    Moran, C.J.2
  • 18
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
    • Li C., Wang J., Wang L., Hu L., Gong P. (2014)-Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6: 964-983. doi: http: //dx. doi. org/10. 3390/rs6020964.
    • (2014) Remote Sensing , vol.6 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 19
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A., Wiener M. (2002)-Classification and Regression by randomForest. R News, 2 (3): 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 20
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D., Weng Q. (2007)-A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28 (5): 823-870. doi: http: //dx. doi. org/10. 1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 21
    • 80051739991 scopus 로고    scopus 로고
    • Evaluating the effects of environmental changes on the gross primary production of Italian forests
    • Maselli F., Moriondo M., Chiesi M., Chirici G., Puletti N., Barbati A., Corona P. (2009)-Evaluating the effects of environmental changes on the gross primary production of Italian forests. Remote Sensing, 1 (4): 1108-1124. doi: http: //dx. doi. org/10. 3390/ rs1041108.
    • (2009) Remote Sensing , vol.1 , Issue.4 , pp. 1108-1124
    • Maselli, F.1    Moriondo, M.2    Chiesi, M.3    Chirici, G.4    Puletti, N.5    Barbati, A.6    Corona, P.7
  • 22
    • 77955662548 scopus 로고    scopus 로고
    • Artificial neural networks applied to cancer detection in a breast screening programme
    • Menéndeza L. A., de Cos Juez F. J., Lasheras F. S., Riesgo J. A. A. (2010)-Artificial neural networks applied to cancer detection in a breast screening programme. Mathematical and Computer Modelling, 52 (2010): 983-991. doi: http: //dx. doi. org/10. 1016/j. mcm. 2010. 03. 019.
    • (2010) Mathematical and Computer Modelling , vol.52 , Issue.2010 , pp. 983-991
    • Menéndeza, L.A.1    de Cos Juez, F.J.2    Lasheras, F.S.3    Riesgo, J.A.A.4
  • 24
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., Bruzzone L. (2004)-Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42: 1778-1790. doi: http: //dx. doi. org/10. 1109/TGRS. 2004. 831865.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 25
  • 27
    • 80255131087 scopus 로고    scopus 로고
    • Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping
    • Petropoulos G. P., Arvanitis K., Sigrimis N. (2012)-Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Systems with Application, 39: 3800-3809. doi: http: //dx. doi. org/10. 1016/j. eswa. 2011. 09. 083.
    • (2012) Expert Systems with Application , vol.39 , pp. 3800-3809
    • Petropoulos, G.P.1    Arvanitis, K.2    Sigrimis, N.3
  • 28
    • 58349122295 scopus 로고    scopus 로고
    • Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy
    • Pignatti S., Cavalli R. M., Cuomo V., Fusilli L., Pascucci S., Poscolieri M., Santini F. (2009)-Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy. Remote Sensing of Environment, 113: 622-634. doi: http: // dx. doi. org/10. 1016/j. rse. 2008. 11. 006.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 622-634
    • Pignatti, S.1    Cavalli, R.M.2    Cuomo, V.3    Fusilli, L.4    Pascucci, S.5    Poscolieri, M.6    Santini, F.7
  • 30
    • 2942724627 scopus 로고    scopus 로고
    • Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications
    • Thenkabail S. P., Enclona E. A., Ashton M., Van Der Meer B. (2004)-Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91 (3-4): 354-376. doi: http: //dx. doi. org/10. 1016/j. rse. 2004. 03. 013.
    • (2004) Remote Sensing of Environment , vol.91 , Issue.3-4 , pp. 354-376
    • Thenkabail, S.P.1    Enclona, E.A.2    Ashton, M.3    Van Der Meer, B.4
  • 31
    • 80255129426 scopus 로고    scopus 로고
    • USGS (2008)-EO1 User Guide. Available online at: http: //eo1. usgs. gov/documents/ EO1userguidev2pt320030715UC. pdf
    • (2008) EO1 User Guide
    • USGS1
  • 32
    • 26944473196 scopus 로고    scopus 로고
    • On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
    • Van Niel T., McVicar T., Datt B. (2005)-On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment, 98: 468-480. doi: http: //dx. doi. org/10. 1016/j. rse. 2005. 08. 011.
    • (2005) Remote Sensing of Environment , vol.98 , pp. 468-480
    • Van Niel, T.1    McVicar, T.2    Datt, B.3
  • 34
    • 77951099810 scopus 로고    scopus 로고
    • Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data
    • White J. C., Gómez C., Wulder M. A., Coops N. C. (2010)-Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sensing of Environment, 114: 1576-1589. doi: http: //dx. doi. org/10. 1016/j. rse. 2010. 02. 012.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1576-1589
    • White, J.C.1    Gómez, C.2    Wulder, M.A.3    Coops, N.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.