메뉴 건너뛰기




Volumn FS-15-01, Issue , 2015, Pages 51-59

Temporal and object relations in unsupervised plan and activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMMERCE; ECONOMIC AND SOCIAL EFFECTS; HUMAN ROBOT INTERACTION; INTELLIGENT ROBOTS; PATTERN RECOGNITION; ROBOTS; STATISTICS;

EID: 84964670234     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (41)
  • 7
    • 84869133207 scopus 로고    scopus 로고
    • ADR-SPLDA: Activity discovery and recognition by combining sequential patterns and latent dirichlet allocation
    • Chikhaoui, B.; Wang, S.; and Pigot, H. 2012. ADR-SPLDA: Activity discovery and recognition by combining sequential patterns and latent dirichlet allocation. Pervasive and Mobile Computing 8(6):845-862.
    • (2012) Pervasive and Mobile Computing , vol.8 , Issue.6 , pp. 845-862
    • Chikhaoui, B.1    Wang, S.2    Pigot, H.3
  • 8
    • 84881180779 scopus 로고    scopus 로고
    • Activity discovery and activity recognition: A new partnership
    • Cook, D.; Krishnan, N.; and Rashidi, P. 2013. Activity discovery and activity recognition: A new partnership. IEEE Transactions on Cybernetics 43(3):820-828.
    • (2013) IEEE Transactions on Cybernetics , vol.43 , Issue.3 , pp. 820-828
    • Cook, D.1    Krishnan, N.2    Rashidi, P.3
  • 10
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden Markov model: Analysis and applications
    • Fine, S.; Singer, Y.; and Tishby, N. 1998. The hierarchical hidden Markov model: Analysis and applications. Machine Learning 32(1):41-62.
    • (1998) Machine Learning , vol.32 , Issue.1 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 15
    • 72949124564 scopus 로고    scopus 로고
    • Gibbs sampling in the generative model of latent Dirichlet allocation
    • Griffiths, T. 2002. Gibbs sampling in the generative model of latent Dirichlet allocation. Technical report, Stanford University.
    • (2002) Technical Report, Stanford University
    • Griffiths, T.1
  • 17
    • 84888780383 scopus 로고    scopus 로고
    • Bayesian learning of tool affordances based on generalization of functional feature to estimate effects of unseen tools
    • Jain, R., and Inamura, T. 2013. Bayesian learning of tool affordances based on generalization of functional feature to estimate effects of unseen tools. Artificial Life and Robotics 18(1-2):95-103.
    • (2013) Artificial Life and Robotics , vol.18 , Issue.1-2 , pp. 95-103
    • Jain, R.1    Inamura, T.2
  • 20
    • 84897508000 scopus 로고    scopus 로고
    • Learning spatio- temporal structure from RGB-D videos for human activity detection and anticipation
    • Koppula, H. S., and Saxena, A. 2013. Learning spatio- temporal structure from RGB-D videos for human activity detection and anticipation. In Proc. of the Int'l Conference on Machine Learning.
    • (2013) Proc. of the Int'l Conference on Machine Learning
    • Koppula, H.S.1    Saxena, A.2
  • 32
    • 85145541793 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Landauer, T. McNamara, S. D. and Kintsch, W. eds., Laurence Erlbaum
    • Steyvers, M., and Griffiths, T. 2007. Probabilistic topic models. In Landauer, T.; McNamara, S. D.; and Kintsch, W., eds., Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum.
    • (2007) Latent Semantic Analysis: A Road to Meaning
    • Steyvers, M.1    Griffiths, T.2
  • 36
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi, A. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2):260-269.
    • (1967) IEEE Transactions on Information Theory , vol.13 , Issue.2 , pp. 260-269
    • Viterbi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.