메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84964291950     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep24633     Document Type: Article
Times cited : (25)

References (61)
  • 1
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729-15735 (2006).
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 2
    • 84925271964 scopus 로고    scopus 로고
    • Toward economically feasible direct solar-to-fuel energy conversion
    • Sivula, K. Toward economically feasible direct solar-to-fuel energy conversion. J. Phys. Chem. Lett. 6, 975-976 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 975-976
    • Sivula, K.1
  • 4
    • 84902144692 scopus 로고    scopus 로고
    • Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    • Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520-7535 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7520-7535
    • Hisatomi, T.1    Kubota, J.2    Domen, K.3
  • 5
    • 84907428372 scopus 로고    scopus 로고
    • Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts
    • Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593-1596 (2014).
    • (2014) Science , vol.345 , pp. 1593-1596
    • Luo, J.1
  • 6
    • 84907588597 scopus 로고    scopus 로고
    • Ten-percent solar-to-fuel conversion with nonprecious materials
    • Cox, C. R., Lee, J. Z., Nocera, D. G. & Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. 111, 14057-14061 (2014).
    • (2014) Proc. Natl. Acad. Sci. , vol.111 , pp. 14057-14061
    • Cox, C.R.1    Lee, J.Z.2    Nocera, D.G.3    Buonassisi, T.4
  • 7
    • 84902983122 scopus 로고    scopus 로고
    • Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again
    • Jacobsson, T. J., Fjällström, V., Edoff, M. & Edvinsson, T. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci. 7, 2056-2070 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2056-2070
    • Jacobsson, T.J.1    Fjällström, V.2    Edoff, M.3    Edvinsson, T.4
  • 8
    • 84941690718 scopus 로고    scopus 로고
    • Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    • Ager III, J. W., Shaner, M., Walczak, K., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811-2824 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2811-2824
    • Ager, J.W.1    Shaner, M.2    Walczak, K.3    Sharp, I.D.4    Ardo, S.5
  • 10
    • 84941618794 scopus 로고    scopus 로고
    • Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
    • May, M. M., Lewerenz, H., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8286
    • May, M.M.1    Lewerenz, H.2    Lackner, D.3    Dimroth, F.4    Hannappel, T.5
  • 11
    • 0032593267 scopus 로고    scopus 로고
    • Crystalline Si thin-film solar cells: A review
    • Bergmann, R. B. Crystalline Si thin-film solar cells: a review. Appl. Phys. A 69, 187-194 (1999).
    • (1999) Appl. Phys. A , vol.69 , pp. 187-194
    • Bergmann, R.B.1
  • 13
    • 4043109713 scopus 로고    scopus 로고
    • All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide
    • Gupta, A. & Compaan, A. D. All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide. Appl. Phys. Lett. 85, 684-686 (2015).
    • (2015) Appl. Phys. Lett. , vol.85 , pp. 684-686
    • Gupta, A.1    Compaan, A.D.2
  • 14
    • 84904431024 scopus 로고    scopus 로고
    • Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC
    • Koenigsmann, C., Ripolles, T. S., Brennan, B. J., Negre, C. F. A. & Koepf, M. Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Phys. Chem. Chem. Phys. 16, 16629-16641 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 16629-16641
    • Koenigsmann, C.1    Ripolles, T.S.2    Brennan, B.J.3    Negre, C.F.A.4    Koepf, M.5
  • 15
    • 84947704773 scopus 로고    scopus 로고
    • Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
    • Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944-948 (2015).
    • (2015) Science , vol.350 , pp. 944-948
    • Chen, W.1
  • 16
    • 55049101346 scopus 로고    scopus 로고
    • Optimization of solar powered hydrogen production using photovoltaic electrolysis devices
    • Gibson, T. L. & Kelly, N. A. Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 33, 5931-5940 (2008).
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 5931-5940
    • Gibson, T.L.1    Kelly, N.A.2
  • 18
    • 84922986042 scopus 로고    scopus 로고
    • Performance evaluation and optimum analysis of a photovoltaic-driven electrolyzer system for hydrogen production
    • Yang, Z., Zhang, G. & Lin, B. Performance evaluation and optimum analysis of a photovoltaic-driven electrolyzer system for hydrogen production. Int. J. Hydrogen Energy 40, 3170-3179 (2015).
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 3170-3179
    • Yang, Z.1    Zhang, G.2    Lin, B.3
  • 19
    • 33645027408 scopus 로고    scopus 로고
    • Photocatalyst releasing hydrogen from water
    • Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).
    • (2006) Nature , vol.440 , pp. 295
    • Maeda, K.1
  • 20
    • 84934975511 scopus 로고    scopus 로고
    • Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide
    • Suzuki, T. M. et al. Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. J. Mater. Chem. A 3, 13283-13290 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 13283-13290
    • Suzuki, T.M.1
  • 21
    • 84927785881 scopus 로고    scopus 로고
    • Photoelectrochemical water splitting. A status assessment
    • Peter, L. M. Photoelectrochemical Water Splitting. A Status Assessment. Electroanalysis 27, 864-871 (2015).
    • (2015) Electroanalysis , vol.27 , pp. 864-871
    • Peter, L.M.1
  • 22
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645-648 (2011).
    • (2011) Science , vol.334 , pp. 645-648
    • Reece, S.Y.1
  • 23
    • 84875244097 scopus 로고    scopus 로고
    • Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits
    • Winkler, M., Cox, C., Nocera, D. & Buonassisi, T. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits. Proc. Natl. Acad. Sci. 110, E1076-E1082 (2013).
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , pp. E1076-E1082
    • Winkler, M.1    Cox, C.2    Nocera, D.3    Buonassisi, T.4
  • 24
    • 84922897090 scopus 로고    scopus 로고
    • Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system
    • Walczak, K. et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Chem Sus Chem 8, 544-551 (2015).
    • (2015) Chem Sus Chem , vol.8 , pp. 544-551
    • Walczak, K.1
  • 25
    • 84861174023 scopus 로고    scopus 로고
    • The artificial leaf
    • Nocera, D. G. The Artificial Leaf. Acc. Chem. Res. 45, 767-776 (2012).
    • (2012) Acc. Chem. Res. , vol.45 , pp. 767-776
    • Nocera, D.G.1
  • 26
    • 84893853861 scopus 로고    scopus 로고
    • Artificial leaf goes simpler and more efficient for solar fuel generation
    • Joya, K. S. & De Groot, H. J. M. Artificial leaf goes simpler and more efficient for solar fuel generation. Chem Sus Chem 7, 73-76 (2014).
    • (2014) Chem Sus Chem , vol.7 , pp. 73-76
    • Joya, K.S.1    De Groot, H.J.M.2
  • 27
    • 84890537516 scopus 로고    scopus 로고
    • 2 in a stable, self-regulating, and continuously operating solar fuel generator
    • 2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy Environ. Sci. 7, 297-301 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 297-301
    • Modestino, M.A.1
  • 28
    • 84936869404 scopus 로고    scopus 로고
    • A membrane-less electrolyzer for hydrogen production across the pH scale
    • H. Hashemi, S. M., Modestino, M. A. & Psaltis, D. A membrane-less electrolyzer for hydrogen production across the pH scale. Energy Environ. Sci. 8, 2003-2009 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2003-2009
    • Hashemi, H.S.M.1    Modestino, M.A.2    Psaltis, D.3
  • 29
    • 76849102552 scopus 로고    scopus 로고
    • Recent progress in alkaline water electrolysis for hydrogen production and applications
    • Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307-326 (2010).
    • (2010) Prog. Energy Combust. Sci. , vol.36 , pp. 307-326
    • Zeng, K.1    Zhang, D.2
  • 30
    • 79952334197 scopus 로고    scopus 로고
    • A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity
    • Zhao, Y., Hernandez-pagan, E. A., Vargas-barbosa, N. M., Dysart, J. L. & Mallouk, T. E. A high yield synthesis of ligand-free Iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2, 402-406 (2011).
    • (2011) J. Phys. Chem. Lett. , vol.2 , pp. 402-406
    • Zhao, Y.1    Hernandez-Pagan, E.A.2    Vargas-Barbosa, N.M.3    Dysart, J.L.4    Mallouk, T.E.5
  • 32
    • 0033634510 scopus 로고    scopus 로고
    • 2-catalyzed AlGaAs/Si photoelectrolysis
    • 2-Catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920-8924 (2000).
    • (2000) J. Phys. Chem. B , vol.104 , pp. 8920-8924
    • Licht, S.1
  • 33
    • 84958915569 scopus 로고    scopus 로고
    • Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting
    • Urbain, F. et al. Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. Mater. Sci. Semicond. Process. 42, 142-146 (2015).
    • (2015) Mater. Sci. Semicond. Process , vol.42 , pp. 142-146
    • Urbain, F.1
  • 35
    • 84906253683 scopus 로고    scopus 로고
    • Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts
    • Van Drunen, J. et al. Electrochemically Active Nickel Foams as Support Materials for Nanoscopic Platinum Electrocatalysts. ACS Appl. Mater. Interfaces 6, 12046-12061(2014).
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 12046-12061
    • Van Drunen, J.1
  • 36
    • 84887680701 scopus 로고    scopus 로고
    • Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
    • McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977-16986 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 16977-16986
    • McCrory, C.C.L.1    Jung, S.2    Peters, J.C.3    Jaramillo, T.F.4
  • 37
    • 84934954844 scopus 로고    scopus 로고
    • Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
    • Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7261
    • Wang, H.1
  • 38
    • 85012194092 scopus 로고    scopus 로고
    • Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction
    • Qi, J. et al. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1500199 (2015).
    • (2015) Adv. Sci. , vol.2 , pp. 1500199
    • Qi, J.1
  • 39
    • 84926309062 scopus 로고    scopus 로고
    • In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts
    • Hutchings, G. S. et al. In situ Formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137, 4223-4229 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 4223-4229
    • Hutchings, G.S.1
  • 40
    • 11144272645 scopus 로고    scopus 로고
    • Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium
    • Navarro-Flores, E., Chong, Z. & Omanovic, S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179-197 (2005).
    • (2005) J. Mol. Catal. A Chem. , vol.226 , pp. 179-197
    • Navarro-Flores, E.1    Chong, Z.2    Omanovic, S.3
  • 41
    • 84904570870 scopus 로고    scopus 로고
    • Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
    • Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624-2629 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2624-2629
    • Xiao, P.1
  • 42
    • 84900868846 scopus 로고    scopus 로고
    • Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
    • Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427-5430 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 5427-5430
    • Popczun, E.J.1    Read, C.G.2    Roske, C.W.3    Lewis, N.S.4    Schaak, R.E.5
  • 43
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
    • McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347-4357 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1
  • 46
    • 77956270267 scopus 로고    scopus 로고
    • Silicon cells: Catching rays
    • Taira, K. & Nakata, J. Silicon cells: catching rays. Nat. Photo. 4, 602-603 (2010).
    • (2010) Nat. Photo. , vol.4 , pp. 602-603
    • Taira, K.1    Nakata, J.2
  • 47
    • 31544435769 scopus 로고    scopus 로고
    • Fabrication of spherical silicon solar cells with semi-light-concentration system
    • Minemoto, T. et al. Fabrication of spherical silicon solar cells with semi-light-concentration system. Jpn. J. Appl. Phys. 44, 4820-4824 (2005).
    • (2005) Jpn. J. Appl. Phys. , vol.44 , pp. 4820-4824
    • Minemoto, T.1
  • 48
    • 33748316513 scopus 로고    scopus 로고
    • Design strategy and development of spherical silicon solar cell with semi-concentration reflector system
    • Minemoto, T., Murozono, M., Yamaguchi, Y., Takakura, H. & Hamakawa, Y. Design strategy and development of spherical silicon solar cell with semi-concentration reflector system. Sol. Energy Mater. Sol. Cells 90, 3009-3013 (2006).
    • (2006) Sol. Energy Mater. Sol. Cells , vol.90 , pp. 3009-3013
    • Minemoto, T.1    Murozono, M.2    Yamaguchi, Y.3    Takakura, H.4    Hamakawa, Y.5
  • 49
    • 0022594143 scopus 로고
    • 2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H
    • 2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H. Int. J. Hydrogen Energy 11, 533-540 (1986).
    • (1986) Int. J. Hydrogen Energy , vol.11 , pp. 533-540
    • Conway, B.1    Bai, L.2
  • 50
    • 0021521062 scopus 로고
    • Attenuation of solar radiation in scattering-absorbing waters: A simplified procedure for its calculation
    • Kirk, J. T. O. Attenuation of solar radiation in scattering-absorbing waters: a simplified procedure for its calculation. Appl. Opt. 23, 3737-3739 (1984).
    • (1984) Appl. Opt. , vol.23 , pp. 3737-3739
    • Kirk, J.T.O.1
  • 51
    • 0027639149 scopus 로고
    • Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range
    • Kou, L., Labrie, D. & Chylek, P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt. 32, 3531-3540 (1993).
    • (1993) Appl. Opt. , vol.32 , pp. 3531-3540
    • Kou, L.1    Labrie, D.2    Chylek, P.3
  • 52
    • 0031581170 scopus 로고    scopus 로고
    • Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements
    • Pope, R. M. & Fry, E. S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710-8723 (1997).
    • (1997) Appl. Opt. , vol.36 , pp. 8710-8723
    • Pope, R.M.1    Fry, E.S.2
  • 53
    • 84876102735 scopus 로고    scopus 로고
    • Temperature dependence of light absorption by water
    • Cumming, J. B. Temperature dependence of light absorption by water. Nucl. Inst. Methods Phys. Res. A 713, 1-4 (2013).
    • (2013) Nucl. Inst. Methods Phys. Res. A , vol.713 , pp. 1-4
    • Cumming, J.B.1
  • 54
    • 84942372315 scopus 로고    scopus 로고
    • Hyperspectral absorption coefficient of "pure" seawater in the range of 350-550 nm inverted from remote sensing reflectance
    • Lee, Z. et al. Hyperspectral absorption coefficient of "pure" seawater in the range of 350-550 nm inverted from remote sensing reflectance. Appl. Opt. 54, 546-558 (2015).
    • (2015) Appl. Opt. , vol.54 , pp. 546-558
    • Lee, Z.1
  • 55
    • 34250009147 scopus 로고
    • The refractive index of air
    • Edlén, B. The Refractive Index of Air. Metrologia 2, 71-80 (1966).
    • (1966) Metrologia , vol.2 , pp. 71-80
    • Edlén, B.1
  • 56
    • 84944157899 scopus 로고
    • Refractive index of water and its dependence on wavelength, temperature, and density
    • Thormählen, I., Straub, J. & Grigull, U. Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Ref. Data. 14, 933-945 (1985).
    • (1985) J. Phys. Chem. Ref. Data , vol.14 , pp. 933-945
    • Thormählen, I.1    Straub, J.2    Grigull, U.3
  • 57
    • 84956644172 scopus 로고    scopus 로고
    • Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions
    • Shinagawa, T. & Takanabe, K. Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions. J. Phys. Chem. C 120, 1785-1794 (2016).
    • (2016) J. Phys. Chem. C , vol.120 , pp. 1785-1794
    • Shinagawa, T.1    Takanabe, K.2
  • 58
    • 84940507336 scopus 로고    scopus 로고
    • Renewable fuels from concentrated solar power: Towards practical artificial photosynthesis
    • Bonke, S. A., Wiechen, M., Macfarlane, D. R. & Spiccia, L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791-2796 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2791-2796
    • Bonke, S.A.1    Wiechen, M.2    Macfarlane, D.R.3    Spiccia, L.4
  • 59
    • 84928399923 scopus 로고    scopus 로고
    • Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions
    • Shinagawa, T. & K. Takanabe. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J. Power Sources 287, 465-471 (2015).
    • (2015) J. Power Sources , vol.287 , pp. 465-471
    • Shinagawa, T.1    Takanabe, K.2
  • 60
    • 84940865555 scopus 로고    scopus 로고
    • Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions
    • Shinagawa, T. & K. Takanabe. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions. J. Phys. Chem. C 199, 20453-20458 (2015).
    • (2015) J. Phys. Chem. C , vol.199 , pp. 20453-20458
    • Shinagawa, T.1    Takanabe, K.2
  • 61
    • 84960172157 scopus 로고    scopus 로고
    • Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide
    • Nurlaela, E., Shinagawa, T., Qureshi, M., Dhawale, D. S. & Takanabe, K. Temperature Dependence of Electrocatalytic and Photocatalytic Oxygen Evolution Reaction Rates Using NiFe Oxide. ACS Catal. 6, 1713-1722 (2016).
    • (2016) ACS Catal. , vol.6 , pp. 1713-1722
    • Nurlaela, E.1    Shinagawa, T.2    Qureshi, M.3    Dhawale, D.S.4    Takanabe, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.