메뉴 건너뛰기




Volumn 20, Issue , 2011, Pages 1-14

Cell mechanics: The role of simulation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84964265166     PISSN: 18713033     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-94-007-1254-6_1     Document Type: Conference Paper
Times cited : (5)

References (66)
  • 2
    • 0036208157 scopus 로고    scopus 로고
    • Why mechanobiology? A survey article
    • Van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401-14.
    • (2002) J Biomech , vol.35 , pp. 401-414
    • Van Der Meulen, M.C.1    Huiskes, R.2
  • 3
    • 0034621881 scopus 로고    scopus 로고
    • Effects of mechanical forces on maintenance and adaptation of form in trabecular bone
    • Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD, (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704-6.
    • (2000) Nature , vol.405 , pp. 704-706
    • Huiskes, R.1    Ruimerman, R.2    Van Lenthe, G.H.3    Janssen, J.D.4
  • 4
    • 0001352989 scopus 로고    scopus 로고
    • A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff
    • Fernandes P, Rodrigues H, Jacobs C, (1999) A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff. Comput Methods Biomech Biomed Engin 2:125-138.
    • (1999) Comput Methods Biomech Biomed Engin , vol.2 , pp. 125-138
    • Fernandes, P.1    Rodrigues, H.2    Jacobs, C.3
  • 5
    • 34547427002 scopus 로고    scopus 로고
    • Verification, validation and sensitivity studies in computational biomechanics
    • Anderson AE, Ellis BJ, Weiss J A, (2007) Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin 10:171-84.
    • (2007) Comput Methods Biomech Biomed Engin , vol.10 , pp. 171-184
    • Anderson, A.E.1    Ellis, B.J.2    Weiss, J.A.3
  • 6
    • 56649103781 scopus 로고    scopus 로고
    • Elasticity measurement of living cells with an atomic force microscope: Data acquisition and processing
    • Carl P, Schillers H, (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457: 551-9.
    • (2008) Pflugers Arch , vol.457 , pp. 551-559
    • Carl, P.1    Schillers, H.2
  • 8
    • 0003585014 scopus 로고
    • Numerical simulation of bone adaptation to mechanical load
    • Stanford, Stanford
    • Jacobs CR, (1994) Numerical simulation of bone adaptation to mechanical load. Mechanical Engineering. Stanford, Stanford.
    • (1994) Mechanical Engineering
    • Jacobs, C.R.1
  • 10
    • 0036342923 scopus 로고    scopus 로고
    • A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading
    • Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163-71.
    • (2002) J Biomech , vol.35 , pp. 1163-1171
    • Lacroix, D.1    Prendergast, P.J.2
  • 11
    • 19744379584 scopus 로고    scopus 로고
    • Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects
    • Kelly DJ, Prendergast PJ, (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413-22.
    • (2005) J Biomech , vol.38 , pp. 1413-1422
    • Kelly, D.J.1    Prendergast, P.J.2
  • 12
    • 72049130612 scopus 로고    scopus 로고
    • Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach
    • Khayyeri H, Checa S, Tagil M, Prendergast PJ (2009) Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J Orthop Res 27:1659-1666.
    • (2009) J Orthop Res , vol.27 , pp. 1659-1666
    • Khayyeri, H.1    Checa, S.2    Tagil, M.3    Prendergast, P.J.4
  • 13
    • 54749147579 scopus 로고    scopus 로고
    • Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells
    • Andreykiv A, Van Keulen F, Prendergast PJ, (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7:443-61.
    • (2008) Biomech Model Mechanobiol , vol.7 , pp. 443-461
    • Andreykiv, A.1    Van Keulen, F.2    Prendergast, P.J.3
  • 14
    • 39549122768 scopus 로고    scopus 로고
    • Tissue differentiation and bone regeneration in an osteotomized mandible: A computational analysis of the latency period
    • Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ, (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46:283-98.
    • (2008) Med Biol Eng Comput , vol.46 , pp. 283-298
    • Boccaccio, A.1    Prendergast, P.J.2    Pappalettere, C.3    Kelly, D.J.4
  • 15
  • 16
    • 33646417935 scopus 로고    scopus 로고
    • Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing
    • Isaksson H, Wilson W, Van Donkelaar CC, Huiskes R, Ito K, (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39:1507-16.
    • (2006) J Biomech , vol.39 , pp. 1507-1516
    • Isaksson, H.1    Wilson, W.2    Van Donkelaar, C.C.3    Huiskes, R.4    Ito, K.5
  • 17
    • 71249083983 scopus 로고    scopus 로고
    • Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation
    • Hayward LN, Morgan EF, (2009) Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech Model Mechanobiol 8:447-455.
    • (2009) Biomech Model Mechanobiol , vol.8 , pp. 447-455
    • Hayward, L.N.1    Morgan, E.F.2
  • 18
    • 57349105663 scopus 로고    scopus 로고
    • A mechanobiological model for tissue differentiation that includes angiogenesis: A lattice-based modeling approach
    • Checa S, Prendergast PJ, (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37:129-45.
    • (2009) Ann Biomed Eng , vol.37 , pp. 129-145
    • Checa, S.1    Prendergast, P.J.2
  • 20
    • 77955109456 scopus 로고    scopus 로고
    • Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair
    • Nagel T, Kelly DJ, (2010) Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech Model Mechanobiol, 9, 359-72.
    • (2010) Biomech Model Mechanobiol , vol.9 , pp. 359-372
    • Nagel, T.1    Kelly, D.J.2
  • 21
    • 84964283701 scopus 로고    scopus 로고
    • Jacobs CR (Ed.). Valencia, Spain
    • Khayyeri H, (2010) in Jacobs CR (Ed.). Valencia, Spain.
    • (2010)
    • Khayyeri, H.1
  • 22
    • 37649002771 scopus 로고    scopus 로고
    • Cell and biomolecular mechanics in silico
    • Vaziri A, Gopinath A, (2008) Cell and biomolecular mechanics in silico. Nat Mater 7:15-23.
    • (2008) Nat Mater , vol.7 , pp. 15-23
    • Vaziri, A.1    Gopinath, A.2
  • 24
    • 0025469243 scopus 로고
    • Passive deformations and active motions of leukocytes
    • Skalak R, Dong C, Zhu C, (1990) Passive deformations and active motions of leukocytes. J Biomech Eng 112:295-302.
    • (1990) J Biomech Eng , vol.112 , pp. 295-302
    • Skalak, R.1    Dong, C.2    Zhu, C.3
  • 25
    • 0026785864 scopus 로고
    • Leukocyte deformability: Finite element modeling of large viscoelastic deformation
    • Dong C, Skalak R, (1992) Leukocyte deformability: finite element modeling of large viscoelastic deformation. J Theor Biol 158:173-93.
    • (1992) J Theor Biol , vol.158 , pp. 173-193
    • Dong, C.1    Skalak, R.2
  • 26
    • 0025886995 scopus 로고
    • Mathematical model for the effects of adhesion and mechanics on cell migration speed
    • DiMilla PA, Barbee K, Lauffenburger DA, (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15-37.
    • (1991) Biophys J , vol.60 , pp. 15-37
    • DiMilla, P.A.1    Barbee, K.2    Lauffenburger, D.A.3
  • 27
    • 0141530984 scopus 로고    scopus 로고
    • Computational modeling of cell adhesion and movement using a continuum-kinetics approach
    • N'Dri NA, Shyy W, Tran-Son-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85:2273-86.
    • (2003) Biophys J , vol.85 , pp. 2273-2286
    • N'Dri, N.A.1    Shyy, W.2    Tran-Son-Tay, R.3
  • 28
    • 0028053977 scopus 로고
    • Kinetics of cell detachment: Peeling of discrete receptor clusters
    • Ward MD, Dembo M, Hammer DA, (1994) Kinetics of cell detachment: peeling of discrete receptor clusters. Biophys J 67:2522-34.
    • (1994) Biophys J , vol.67 , pp. 2522-2534
    • Ward, M.D.1    Dembo, M.2    Hammer, D.A.3
  • 29
    • 0033991303 scopus 로고    scopus 로고
    • Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability
    • Dong C, Lei XX, (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33:35-43.
    • (2000) J Biomech , vol.33 , pp. 35-43
    • Dong, C.1    Lei, X.X.2
  • 30
    • 0033119299 scopus 로고    scopus 로고
    • Numerical analysis of the deformation of an adherent drop under shear flow
    • Kan HC, Udaykumar HS, Shyy W, Tran-Son-Tay R, (1999) Numerical analysis of the deformation of an adherent drop under shear flow. J Biomech Eng 121:160-9.
    • (1999) J Biomech Eng , vol.121 , pp. 160-169
    • Kan, H.C.1    Udaykumar, H.S.2    Shyy, W.3    Tran-Son-Tay, R.4
  • 31
    • 0347596462 scopus 로고    scopus 로고
    • Numerical simulation of the flow-induced deformation of red blood cells
    • Pozrikidis C, (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194-205.
    • (2003) Ann Biomed Eng , vol.31 , pp. 1194-1205
    • Pozrikidis, C.1
  • 32
    • 33750245074 scopus 로고    scopus 로고
    • FE models of stress-strain states in vascular smooth muscle cell
    • Bursa J, Lebis R, Janicek P, (2006) FE models of stress-strain states in vascular smooth muscle cell. Technol Health Care 14:311-20.
    • (2006) Technol Health Care , vol.14 , pp. 311-320
    • Bursa, J.1    Lebis, R.2    Janicek, P.3
  • 33
    • 0034152847 scopus 로고    scopus 로고
    • Finite element simulation of location-and time-dependent mechanical behavior of chondrocytes in unconfined compression tests
    • Wu JZ, Herzog W, (2000) Finite element simulation of location-and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng 28:318-30.
    • (2000) Ann Biomed Eng , vol.28 , pp. 318-330
    • Wu, J.Z.1    Herzog, W.2
  • 34
    • 33847401967 scopus 로고    scopus 로고
    • Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix
    • Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A (2007) Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J Biomech 40:1011-23.
    • (2007) J Biomech , vol.40 , pp. 1011-1023
    • Ng, L.1    Hung, H.H.2    Sprunt, A.3    Chubinskaya, S.4    Ortiz, C.5    Grodzinsky, A.6
  • 35
    • 34249734843 scopus 로고    scopus 로고
    • Mechanics and deformation of the nucleus in micropipette aspiration experiment
    • Vaziri A, Mofrad MR, (2007) Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 40:2053-62.
    • (2007) J Biomech , vol.40 , pp. 2053-2062
    • Vaziri, A.1    Mofrad, M.R.2
  • 36
    • 51649127033 scopus 로고    scopus 로고
    • A microstructurally informed model for the mechanical response of three-dimensional actin networks
    • Kwon RY, Lew AJ, Jacobs CR, (2008) A microstructurally informed model for the mechanical response of three-dimensional actin networks. Comput Methods Biomech Biomed Engin 11:407-18.
    • (2008) Comput Methods Biomech Biomed Engin , vol.11 , pp. 407-418
    • Kwon, R.Y.1    Lew, A.J.2    Jacobs, C.R.3
  • 37
    • 34447515218 scopus 로고    scopus 로고
    • Constitutive material modeling of cell: A micromechanics approach
    • Unnikrishnan GU, Unnikrishnan VU, Reddy JN, (2007) Constitutive material modeling of cell: a micromechanics approach. J Biomech Eng 129:315-23.
    • (2007) J Biomech Eng , vol.129 , pp. 315-323
    • Unnikrishnan, G.U.1    Unnikrishnan, V.U.2    Reddy, J.N.3
  • 38
    • 68249083215 scopus 로고    scopus 로고
    • Computational analysis of viscoelastic properties of crosslinked actin networks
    • Kim T, Hwang W, Lee H, Kamm RD, (2009) Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput Biol 5: e1000439.
    • (2009) PLoS Comput Biol , vol.5
    • Kim, T.1    Hwang, W.2    Lee, H.3    Kamm, R.D.4
  • 40
    • 34249661685 scopus 로고    scopus 로고
    • Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells
    • Jaasma MJ, Jackson WM, Tang RY, Keaveny TM, (2007) Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J Biomech 40:1938-45.
    • (2007) J Biomech , vol.40 , pp. 1938-1945
    • Jaasma, M.J.1    Jackson, W.M.2    Tang, R.Y.3    Keaveny, T.M.4
  • 42
    • 64849094619 scopus 로고    scopus 로고
    • Mechanically induced osteogenic differentiation - The role of RhoA, ROCKII and cytoskeletal dynamics
    • Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR, (2009) Mechanically induced osteogenic differentiation - the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546-53.
    • (2009) J Cell Sci , vol.122 , pp. 546-553
    • Arnsdorf, E.J.1    Tummala, P.2    Kwon, R.Y.3    Jacobs, C.R.4
  • 43
    • 0031604586 scopus 로고    scopus 로고
    • The architecture of life
    • Ingber DE, (1998) The architecture of life. Sci Am, 278:48-57.
    • (1998) Sci Am , vol.278 , pp. 48-57
    • Ingber, D.E.1
  • 44
    • 2642535320 scopus 로고    scopus 로고
    • A computational tensegrity model predicts dynamic rheological behaviors in living cells
    • Sultan C, Stamenovic D, Ingber DE, (2004) A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng, 32:520-30.
    • (2004) Ann Biomed Eng , vol.32 , pp. 520-530
    • Sultan, C.1    Stamenovic, D.2    Ingber, D.E.3
  • 45
    • 0036978224 scopus 로고    scopus 로고
    • Cytoskeletal architecture and mechanical behavior of living cells
    • Volokh KY, (2003) Cytoskeletal architecture and mechanical behavior of living cells. Biorheology, 40:213-20.
    • (2003) Biorheology , vol.40 , pp. 213-220
    • Volokh, K.Y.1
  • 46
    • 72149113317 scopus 로고    scopus 로고
    • The biomechanical integrin
    • Baker EL, Zaman MH, (2009) The biomechanical integrin. J Biomech 43:38-44.
    • (2009) J Biomech , vol.43 , pp. 38-44
    • Baker, E.L.1    Zaman, M.H.2
  • 47
    • 43949090857 scopus 로고    scopus 로고
    • Elastic modeling of biomembranes and lipid bilayers
    • Brown FL, (2008) Elastic modeling of biomembranes and lipid bilayers. Annu Rev Phys Chem, 59:685-712.
    • (2008) Annu Rev Phys Chem , vol.59 , pp. 685-712
    • Brown, F.L.1
  • 48
    • 63449112111 scopus 로고    scopus 로고
    • Cytoskeleton-membrane interactions in neuronal growth cones: A finite analysis study
    • Allen KB, Sasoglu FM, LAYTON BE, (2009) Cytoskeleton-membrane interactions in neuronal growth cones: a finite analysis study. J Biomech Eng, 131:021006.
    • (2009) J Biomech Eng , vol.131 , pp. 021006
    • Allen, K.B.1    Sasoglu, F.M.2    Layton, B.E.3
  • 49
  • 52
    • 84964256987 scopus 로고    scopus 로고
    • A numerical model of cellular blebbing: A volume-conserving, fluid-structure interaction model of the entire cell
    • Young J, Mitran S, (2010) A numerical model of cellular blebbing: A volume-conserving, fluid-structure interaction model of the entire cell. J Biomech. 42:210:20.
    • (2010) J Biomech. , vol.42 , Issue.210 , pp. 20
    • Young, J.1    Mitran, S.2
  • 53
    • 0031081430 scopus 로고    scopus 로고
    • A finite-element model of inner ear hair bundle micromechanics
    • Duncan RK, Grant JW, (1997) A finite-element model of inner ear hair bundle micromechanics. Hear Res 104:15-26.
    • (1997) Hear Res , vol.104 , pp. 15-26
    • Duncan, R.K.1    Grant, J.W.2
  • 54
    • 0034144670 scopus 로고    scopus 로고
    • A finite element method for mechanical response of hair cell ciliary bundles
    • Cotton JR, Grant JW, (2000) A finite element method for mechanical response of hair cell ciliary bundles. J Biomech Eng 122:44-50.
    • (2000) J Biomech Eng , vol.122 , pp. 44-50
    • Cotton, J.R.1    Grant, J.W.2
  • 55
    • 2542482615 scopus 로고    scopus 로고
    • Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure
    • Hartmann C, Delgado A, (2004) Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. J Biomech 37:977-87.
    • (2004) J Biomech , vol.37 , pp. 977-987
    • Hartmann, C.1    Delgado, A.2
  • 56
    • 14644436314 scopus 로고    scopus 로고
    • A comparison of strain and fluid shear stress in stimulating bone cell responses - A computational and experimental study
    • McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ, (2005) A comparison of strain and fluid shear stress in stimulating bone cell responses - a computational and experimental study. FASEB J 19:482-4.
    • (2005) FASEB J , vol.19 , pp. 482-484
    • McGarry, J.G.1    Klein-Nulend, J.2    Mullender, M.G.3    Prendergast, P.J.4
  • 57
    • 0035997021 scopus 로고    scopus 로고
    • Determination of cellular strains by combined atomic force microscopy and finite element modeling
    • Charras GT, Horton MA, (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83:858-79.
    • (2002) Biophys J , vol.83 , pp. 858-879
    • Charras, G.T.1    Horton, M.A.2
  • 58
    • 0031708414 scopus 로고    scopus 로고
    • Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models
    • Boey SK, Boal DH, Discher DE, (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75:1573-83.
    • (1998) Biophys J , vol.75 , pp. 1573-1583
    • Boey, S.K.1    Boal, D.H.2    Discher, D.E.3
  • 59
    • 61749090850 scopus 로고    scopus 로고
    • Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution
    • Bevill G, Keaveny TM, (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579-84.
    • (2009) Bone , vol.44 , pp. 579-584
    • Bevill, G.1    Keaveny, T.M.2
  • 60
    • 60549106824 scopus 로고    scopus 로고
    • A comparison of enhanced continuum FE with micro FE models of human vertebral bodies
    • Pahr DH, Zysset PK, (2009) A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech 42:455-62.
    • (2009) J Biomech , vol.42 , pp. 455-462
    • Pahr, D.H.1    Zysset, P.K.2
  • 61
    • 0033106505 scopus 로고    scopus 로고
    • Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions
    • Van Rietbergen B, Muller R, Ulrich D, Ruegsegger P, Huiskes R, (1999) Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32:443-51.
    • (1999) J Biomech , vol.32 , pp. 443-451
    • Van Rietbergen, B.1    Muller, R.2    Ulrich, D.3    Ruegsegger, P.4    Huiskes, R.5
  • 62
    • 74349121388 scopus 로고    scopus 로고
    • A multiscale model for red blood cell mechanics
    • Hartmann D, (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9:1-17.
    • (2010) Biomech Model Mechanobiol , vol.9 , pp. 1-17
    • Hartmann, D.1
  • 63
    • 0034619681 scopus 로고    scopus 로고
    • An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating
    • Dillon RH, Fauci LJ, (2000) An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J Theor Biol 207:415-30.
    • (2000) J Theor Biol , vol.207 , pp. 415-430
    • Dillon, R.H.1    Fauci, L.J.2
  • 66
    • 33745363532 scopus 로고    scopus 로고
    • Analysis and modeling of the primary cilium bending response to fluid shear
    • Schwartz EA, Leonard ML, Bizios R, Bowser SS, (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272: F132-8.
    • (1997) Am J Physiol , vol.272 , pp. F132-F138
    • Schwartz, E.A.1    Leonard, M.L.2    Bizios, R.3    Bowser, S.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.