-
2
-
-
85121765504
-
Mining sentiments from tweets
-
A. Bakliwal, P. Arora, S. Madhappan, N. Kapre, M. Singh, and V. Varma. Mining sentiments from tweets. Proceedings of the WASSA, 2012.
-
(2012)
Proceedings of the WASSA
-
-
Bakliwal, A.1
Arora, P.2
Madhappan, S.3
Kapre, N.4
Singh, M.5
Varma, V.6
-
4
-
-
79953102821
-
Twitter mood predicts the stock market
-
J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1-8, 2011.
-
(2011)
Journal of Computational Science
, vol.2
, Issue.1
, pp. 1-8
-
-
Bollen, J.1
Mao, H.2
Zeng, X.3
-
5
-
-
84861181328
-
Social media evolution of the egyptian revolution
-
A. Choudhary, W. Hendrix, K. Lee, D. Palsetia, and W.-K. Liao. Social media evolution of the egyptian revolution. Communications of the ACM, 55(5):74-80, 2012.
-
(2012)
Communications of the ACM
, vol.55
, Issue.5
, pp. 74-80
-
-
Choudhary, A.1
Hendrix, W.2
Lee, K.3
Palsetia, D.4
Liao, W.-K.5
-
6
-
-
84867785739
-
Beating the news using social media: The case study of American idol
-
F. Ciulla, D. Mocanu, A. Baronchelli, B. Gonçalves, N. Perra, and A. Vespignani. Beating the news using social media: the case study of american idol. EPJ Data Science, 1(1):1-11, 2012.
-
(2012)
EPJ Data Science
, vol.1
, Issue.1
, pp. 1-11
-
-
Ciulla, F.1
Mocanu, D.2
Baronchelli, A.3
Gonçalves, B.4
Perra, N.5
Vespignani, A.6
-
7
-
-
84874631930
-
The geospatial characteristics of a social movement communication network
-
M. D. Conover, C. Davis, E. Ferrara, K. McKelvey, F. Menczer, and A. Flammini. The geospatial characteristics of a social movement communication network. PloS one, 8(3):e55957, 2013.
-
(2013)
PloS One
, vol.8
, Issue.3
, pp. e55957
-
-
Conover, M.D.1
Davis, C.2
Ferrara, E.3
McKelvey, K.4
Menczer, F.5
Flammini, A.6
-
8
-
-
84878436582
-
The digital evolution of occupy wall street
-
M. D. Conover, E. Ferrara, F. Menczer, and A. Flammini. The digital evolution of occupy wall street. PloS one, 8(5):e64679, 2013.
-
(2013)
PloS One
, vol.8
, Issue.5
, pp. e64679
-
-
Conover, M.D.1
Ferrara, E.2
Menczer, F.3
Flammini, A.4
-
9
-
-
84896703695
-
More tweets, more votes: Social media as a quantitative indicator of political behavior
-
J. DiGrazia, K. McKelvey, J. Bollen, and F. Rojas. More tweets, more votes: Social media as a quantitative indicator of political behavior. PloS one, 8(11):e79449, 2013.
-
(2013)
PloS One
, vol.8
, Issue.11
, pp. e79449
-
-
Di Grazia, J.1
McKelvey, K.2
Bollen, J.3
Rojas, F.4
-
10
-
-
84887284554
-
Traveling trends: Social butteries or frequent iers?
-
ACM
-
E. Ferrara, O. Varol, F. Menczer, and A. Flammini. Traveling trends: social butteries or frequent iers? In Proceedings of the first ACM conference on Online social networks, pages 213-222. ACM, 2013.
-
(2013)
Proceedings of the First ACM Conference on Online Social Networks
, pp. 213-222
-
-
Ferrara, E.1
Varol, O.2
Menczer, F.3
Flammini, A.4
-
11
-
-
84870275829
-
No, you cannot predict elections with Twitter
-
D. Gayo-Avello. No, you cannot predict elections with Twitter. Internet Computing, 16(6):91-94, 2012.
-
(2012)
Internet Computing
, vol.16
, Issue.6
, pp. 91-94
-
-
Gayo-Avello, D.1
-
13
-
-
78650122641
-
Twitter sentiment classification using distant supervision
-
Stanford
-
A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages 1-12, 2009.
-
(2009)
CS224N Project Report
, pp. 1-12
-
-
Go, A.1
Bhayani, R.2
Huang, L.3
-
14
-
-
84951033599
-
Social media dynamics of global co-presence during the 2014 FIFA World Cup
-
ACM
-
J. W. Kim, D. Kim, B. Keegan, J. H. Kim, S. Kim, and A. Oh. Social media dynamics of global co-presence during the 2014 FIFA World Cup. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems. ACM, 2015.
-
(2015)
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems
-
-
Kim, J.W.1
Kim, D.2
Keegan, B.3
Kim, J.H.4
Kim, S.5
Oh, A.6
-
15
-
-
84896056107
-
The parable of Google u: Traps in big data analysis
-
D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of Google u: Traps in big data analysis. Science, 343(6176):1203-1205, 2014.
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
16
-
-
34547930440
-
Situating social inuence processes: Dynamic, multidirectional ows of inuence within social networks
-
W. A. Mason, F. R. Conrey, and E. R. Smith. Situating social inuence processes: Dynamic, multidirectional ows of inuence within social networks. Personality and social psychology review, 11(3):279-300, 2007.
-
(2007)
Personality and Social Psychology Review
, vol.11
, Issue.3
, pp. 279-300
-
-
Mason, W.A.1
Conrey, F.R.2
Smith, E.R.3
-
21
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
22
-
-
85013224604
-
Evaluation datasets for Twitter sentiment analysis
-
H. Saif, M. Fernandez, Y. He, and H. Alani. Evaluation datasets for Twitter sentiment analysis. In Proceedings, 1st Workshop on Emotion and Sentiment in Social and Expressive Media (ESSEM), 2013.
-
(2013)
Proceedings, 1st Workshop on Emotion and Sentiment in Social and Expressive Media (ESSEM)
-
-
Saif, H.1
Fernandez, M.2
He, Y.3
Alani, H.4
-
25
-
-
84885455972
-
The power of prediction with social media
-
H. Schoen, D. Gayo-Avello, P. T. Metaxas, E. Mustafaraj, M. Strohmaier, and P. Gloor. The power of prediction with social media. Internet Research, 23(5):528-543, 2013.
-
(2013)
Internet Research
, vol.23
, Issue.5
, pp. 528-543
-
-
Schoen, H.1
Gayo-Avello, D.2
Metaxas, P.T.3
Mustafaraj, E.4
Strohmaier, M.5
Gloor, P.6
-
26
-
-
84885668563
-
The power of shared experience: Simultaneous observation with similar others facilitates social learning
-
G. Shteynberg and E. P. Apfelbaum. The power of shared experience: Simultaneous observation with similar others facilitates social learning. Social Psychological and Personality Science, 4(6):738-744, 2013.
-
(2013)
Social Psychological and Personality Science
, vol.4
, Issue.6
, pp. 738-744
-
-
Shteynberg, G.1
Apfelbaum, E.P.2
-
27
-
-
84922563501
-
Feeling more together: Group attention intensifies emotion
-
G. Shteynberg, J. B. Hirsh, E. P. Apfelbaum, J. T. Larsen, A. D. Galinsky, and N. J. Roese. Feeling more together: Group attention intensifies emotion. Emotion, 14(6):1102, 2014.
-
(2014)
Emotion
, vol.14
, Issue.6
, pp. 1102
-
-
Shteynberg, G.1
Hirsh, J.B.2
Apfelbaum, E.P.3
Larsen, J.T.4
Galinsky, A.D.5
Roese, N.J.6
-
28
-
-
84912557332
-
Twitter polarity classification with label propagation over lexical links and the follower graph
-
ACL
-
M. Speriosu, N. Sudan, S. Upadhyay, and J. Baldridge. Twitter polarity classification with label propagation over lexical links and the follower graph. In Proceedings of the First workshop on Unsupervised Learning in NLP, pages 53-63. ACL, 2011.
-
(2011)
Proceedings of the First Workshop on Unsupervised Learning in NLP
, pp. 53-63
-
-
Speriosu, M.1
Sudan, N.2
Upadhyay, S.3
Baldridge, J.4
-
29
-
-
78951494937
-
Sentiment in Twitter events
-
M. Thelwall, K. Buckley, and G. Paltoglou. Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2):406-418, 2011.
-
(2011)
Journal of the American Society for Information Science and Technology
, vol.62
, Issue.2
, pp. 406-418
-
-
Thelwall, M.1
Buckley, K.2
Paltoglou, G.3
-
30
-
-
84890668120
-
Predicting elections with Twitter: What 140 characters reveal about political sentiment
-
A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting elections with Twitter: What 140 characters reveal about political sentiment. ICWSM, 10:178-185, 2010.
-
(2010)
ICWSM
, vol.10
, pp. 178-185
-
-
Tumasjan, A.1
Sprenger, T.O.2
Sandner, P.G.3
Welpe, I.M.4
-
31
-
-
84904497626
-
Evolution of online user behavior during a social upheaval
-
ACM
-
O. Varol, E. Ferrara, C. L. Ogan, F. Menczer, and A. Flammini. Evolution of online user behavior during a social upheaval. In Proceedings of the 2014 ACM conference on Web science, pages 81-90. ACM, 2014.
-
(2014)
Proceedings of the 2014 ACM Conference on Web Science
, pp. 81-90
-
-
Varol, O.1
Ferrara, E.2
Ogan, C.L.3
Menczer, F.4
Flammini, A.5
-
32
-
-
84868517786
-
Predicting stock market indicators through Twitter "I hope it is not as bad as I fear"
-
X. Zhang, H. Fuehres, and P. A. Gloor. Predicting stock market indicators through Twitter "I hope it is not as bad as I fear". Procedia-Social and Behavioral Sciences, 26:55-62, 2011.
-
(2011)
Procedia-social and Behavioral Sciences
, vol.26
, pp. 55-62
-
-
Zhang, X.1
Fuehres, H.2
Gloor, P.A.3
|