-
2
-
-
0029356977
-
Building energy use prediction and system identification using recurrent neural networks
-
Kreider J.F., Claridge D.E., Curtiss P., Dodier R., Haberl J.S., Krarti M. Building energy use prediction and system identification using recurrent neural networks. J. Sol. Energy Eng. 1995, 117:161-166.
-
(1995)
J. Sol. Energy Eng.
, vol.117
, pp. 161-166
-
-
Kreider, J.F.1
Claridge, D.E.2
Curtiss, P.3
Dodier, R.4
Haberl, J.S.5
Krarti, M.6
-
3
-
-
33645384891
-
Predictions of building's temperature using neural networks models
-
Ruano A.E., Crispim E.M., Conceicao E.Z.E., Lucio M.M.J.R. Predictions of building's temperature using neural networks models. Energy Buildings 2006, 38:682-694.
-
(2006)
Energy Buildings
, vol.38
, pp. 682-694
-
-
Ruano, A.E.1
Crispim, E.M.2
Conceicao, E.Z.E.3
Lucio, M.M.J.R.4
-
4
-
-
0028720756
-
Predicting system loads with artificial neural networks - methods and results from " The great energy predictor shootout"
-
Ohlsson M., Peterson C., Pi H., Rognvaldsson T., Soderberg B. Predicting system loads with artificial neural networks - methods and results from " The great energy predictor shootout" ASHRAE Trans. 1994, 100(2):1063-1074.
-
(1994)
ASHRAE Trans.
, vol.100
, Issue.2
, pp. 1063-1074
-
-
Ohlsson, M.1
Peterson, C.2
Pi, H.3
Rognvaldsson, T.4
Soderberg, B.5
-
5
-
-
0028699188
-
Predicting hourly building energy use: the great energy Prediction Shootout - overview and discussion of results
-
Kreider J.F., Haberl J.S. Predicting hourly building energy use: the great energy Prediction Shootout - overview and discussion of results. ASHRAE Trans. 1994, 100:1104-1118.
-
(1994)
ASHRAE Trans.
, vol.100
, pp. 1104-1118
-
-
Kreider, J.F.1
Haberl, J.S.2
-
6
-
-
0030315652
-
The great energy Predictor Shootout II: measuring retrofit savings-overview and discussion of results
-
Haberl J.S., Thamilseran S. The great energy Predictor Shootout II: measuring retrofit savings-overview and discussion of results. ASHRAE Trans. 1998, 102:419-435.
-
(1998)
ASHRAE Trans.
, vol.102
, pp. 419-435
-
-
Haberl, J.S.1
Thamilseran, S.2
-
7
-
-
33646870136
-
Modelling and predicting building's energy use with artificial neural networks: methods and results
-
Karatasou S., Santamouris M., Geros V. Modelling and predicting building's energy use with artificial neural networks: methods and results. Energy Buildings 2006, 38:949-958.
-
(2006)
Energy Buildings
, vol.38
, pp. 949-958
-
-
Karatasou, S.1
Santamouris, M.2
Geros, V.3
-
8
-
-
0028714841
-
Artificial neural networks backpropagation model with three phase annealing developed for the building energy predictor shootout
-
Kawashima M. Artificial neural networks backpropagation model with three phase annealing developed for the building energy predictor shootout. ASHRAE Trans. 1994, 100(2):1096-1103.
-
(1994)
ASHRAE Trans.
, vol.100
, Issue.2
, pp. 1096-1103
-
-
Kawashima, M.1
-
9
-
-
77952959540
-
-
Modelling the energy consumption of buildings by means of neural networks, in: Proceeding of CESA 96: symposium on control, optimisation and supervision
-
M.R.B. Breekweg, P. Gruber, Modelling the energy consumption of buildings by means of neural networks, in: Proceeding of CESA 96: symposium on control, optimisation and supervision, vol. 1, 1996, pp. 450-455.
-
(1996)
, vol.1
, pp. 450-455
-
-
Breekweg, M.R.B.1
Gruber, P.2
-
10
-
-
0034461103
-
Development of a generalized neural network model to detect faults in building energy performance-part I, part II
-
Breekweg M.R.B., Gruber P., Ahmed O. Development of a generalized neural network model to detect faults in building energy performance-part I, part II. ASHRAE Trans. 2000, 106:61-93.
-
(2000)
ASHRAE Trans.
, vol.106
, pp. 61-93
-
-
Breekweg, M.R.B.1
Gruber, P.2
Ahmed, O.3
-
11
-
-
13844306850
-
Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
-
Gonzales P.A., Zamarreno J.M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Buildings 2005, 37:595-601.
-
(2005)
Energy Buildings
, vol.37
, pp. 595-601
-
-
Gonzales, P.A.1
Zamarreno, J.M.2
-
12
-
-
0742324118
-
Modelling greenhouse temperature using system identification by means of neural networks
-
Frausto H.U., Pieters J.G. Modelling greenhouse temperature using system identification by means of neural networks. Neurocomputing 2004, 56:423-428.
-
(2004)
Neurocomputing
, vol.56
, pp. 423-428
-
-
Frausto, H.U.1
Pieters, J.G.2
-
13
-
-
63049115986
-
Prediction of indoor temperature and relative humidity using neural network models: model comparison
-
Lu T., Viljanen M. Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Comput. Appl. 2009, 18:345-357.
-
(2009)
Neural Comput. Appl.
, vol.18
, pp. 345-357
-
-
Lu, T.1
Viljanen, M.2
-
14
-
-
33751055006
-
Artificial neural network models for indoor temperature prediction: investigations in two buildings
-
Thomas B., Mohseni M.S. Artificial neural network models for indoor temperature prediction: investigations in two buildings. Neural Comput. Appl. 2007, 16:81-89.
-
(2007)
Neural Comput. Appl.
, vol.16
, pp. 81-89
-
-
Thomas, B.1
Mohseni, M.S.2
-
15
-
-
39149127282
-
Modelling of tropical greenhouse temperature by autoregressive and neural network models
-
Patil S.L., Tantau H.J., Salokhe V.M. Modelling of tropical greenhouse temperature by autoregressive and neural network models. Biosyst. Eng. 2008, 99:423-431.
-
(2008)
Biosyst. Eng.
, vol.99
, pp. 423-431
-
-
Patil, S.L.1
Tantau, H.J.2
Salokhe, V.M.3
-
16
-
-
2342635095
-
A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building
-
Mechaqrane A., Zouak M. A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Comput. Appl. 2004, 13:32-37.
-
(2004)
Neural Comput. Appl.
, vol.13
, pp. 32-37
-
-
Mechaqrane, A.1
Zouak, M.2
-
17
-
-
0036983779
-
Application of an artificial neural network for modelling the thermal dynamics of a building's space and its heating system
-
Gouda M.M., Danaher S., Underwood C.P. Application of an artificial neural network for modelling the thermal dynamics of a building's space and its heating system. Math. Computer Model. Dyn. Syst. 2002, 8:333-344.
-
(2002)
Math. Computer Model. Dyn. Syst.
, vol.8
, pp. 333-344
-
-
Gouda, M.M.1
Danaher, S.2
Underwood, C.P.3
-
18
-
-
33645386775
-
Estimation of operative temperature in buildings using artificial neural networks
-
Mohseni M.S., Thomas B., Fahlen P. Estimation of operative temperature in buildings using artificial neural networks. Energy Buildings 2006, 38:635-640.
-
(2006)
Energy Buildings
, vol.38
, pp. 635-640
-
-
Mohseni, M.S.1
Thomas, B.2
Fahlen, P.3
-
20
-
-
10844288841
-
Development of an enthalpy and carbon dioxide based demand control ventilation for indoor air quality and energy savings with neural networks control
-
Chau C.Y.H., Hu J.S. Development of an enthalpy and carbon dioxide based demand control ventilation for indoor air quality and energy savings with neural networks control. Indoor Built Environ. 2004, 13:463-475.
-
(2004)
Indoor Built Environ.
, vol.13
, pp. 463-475
-
-
Chau, C.Y.H.1
Hu, J.S.2
-
23
-
-
0031124173
-
Computational capabilities of recurrent NARX neural networks
-
Siegelmann H.T., Horne B.G., Giles C.L. Computational capabilities of recurrent NARX neural networks. IEEE Trans. Syst., Man, Cybern.-Part B: Cybern. 1997, 27(2):208-215.
-
(1997)
IEEE Trans. Syst., Man, Cybern.-Part B: Cybern.
, vol.27
, Issue.2
, pp. 208-215
-
-
Siegelmann, H.T.1
Horne, B.G.2
Giles, C.L.3
-
24
-
-
56549090156
-
Long-term time series prediction with the NARX network: an empirical evaluation
-
Menezes J.M.P., Barreto G.A. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71:3335-3343.
-
(2008)
Neurocomputing
, vol.71
, pp. 3335-3343
-
-
Menezes, J.M.P.1
Barreto, G.A.2
-
25
-
-
0026868901
-
Long-term prediction of chemical processes using recurrent neural networks: a parallel training approach
-
Su H.T., McAvoy T.J., Werbo P. Long-term prediction of chemical processes using recurrent neural networks: a parallel training approach. Ind. Eng. Chem. Res. 1992, 31:1338-1352.
-
(1992)
Ind. Eng. Chem. Res.
, vol.31
, pp. 1338-1352
-
-
Su, H.T.1
McAvoy, T.J.2
Werbo, P.3
-
26
-
-
77952959043
-
-
Thermal Behaviour Model Identification for Three Different Office Buildings, Ph.D. Thesis, Brunel University, United Kingdom.
-
G. Mustafaraj, Thermal Behaviour Model Identification for Three Different Office Buildings, Ph.D. Thesis, Brunel University, United Kingdom, 2008.
-
(2008)
-
-
Mustafaraj, G.1
-
28
-
-
0029483769
-
Nonlinear black-box modelling in system identification: a unified overview
-
Sjoberg J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P.Y., Hjalmarsson H., Juditsky A. Nonlinear black-box modelling in system identification: a unified overview. Automatica 1995, 31(12):1691-1724.
-
(1995)
Automatica
, vol.31
, Issue.12
, pp. 1691-1724
-
-
Sjoberg, J.1
Zhang, Q.2
Ljung, L.3
Benveniste, A.4
Delyon, B.5
Glorennec, P.Y.6
Hjalmarsson, H.7
Juditsky, A.8
|