메뉴 건너뛰기




Volumn 34, Issue 11, 2010, Pages 3216-3230

Thermal behaviour prediction utilizing artificial neural networks for an open office

Author keywords

Black box non linear neural network models; Building management system; Optimal brain surgeon pruning algorithm; Room temperature and relative humidity prediction

Indexed keywords

BLACK BOXES; BUILDING MANAGEMENT SYSTEM; NONLINEAR NEURAL NETWORKS; OPTIMAL BRAIN SURGEON; PRUNING ALGORITHMS; ROOM TEMPERATURE;

EID: 77952953206     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2010.02.014     Document Type: Article
Times cited : (49)

References (28)
  • 1
    • 0000035641 scopus 로고
    • Neural networks models of the greenhouse climate
    • Seginer I., Boulard T., Bailey J. Neural networks models of the greenhouse climate. J. Agric. Eng. Res. 1994, 59:203-216.
    • (1994) J. Agric. Eng. Res. , vol.59 , pp. 203-216
    • Seginer, I.1    Boulard, T.2    Bailey, J.3
  • 4
    • 0028720756 scopus 로고
    • Predicting system loads with artificial neural networks - methods and results from " The great energy predictor shootout"
    • Ohlsson M., Peterson C., Pi H., Rognvaldsson T., Soderberg B. Predicting system loads with artificial neural networks - methods and results from " The great energy predictor shootout" ASHRAE Trans. 1994, 100(2):1063-1074.
    • (1994) ASHRAE Trans. , vol.100 , Issue.2 , pp. 1063-1074
    • Ohlsson, M.1    Peterson, C.2    Pi, H.3    Rognvaldsson, T.4    Soderberg, B.5
  • 5
    • 0028699188 scopus 로고
    • Predicting hourly building energy use: the great energy Prediction Shootout - overview and discussion of results
    • Kreider J.F., Haberl J.S. Predicting hourly building energy use: the great energy Prediction Shootout - overview and discussion of results. ASHRAE Trans. 1994, 100:1104-1118.
    • (1994) ASHRAE Trans. , vol.100 , pp. 1104-1118
    • Kreider, J.F.1    Haberl, J.S.2
  • 6
    • 0030315652 scopus 로고    scopus 로고
    • The great energy Predictor Shootout II: measuring retrofit savings-overview and discussion of results
    • Haberl J.S., Thamilseran S. The great energy Predictor Shootout II: measuring retrofit savings-overview and discussion of results. ASHRAE Trans. 1998, 102:419-435.
    • (1998) ASHRAE Trans. , vol.102 , pp. 419-435
    • Haberl, J.S.1    Thamilseran, S.2
  • 7
    • 33646870136 scopus 로고    scopus 로고
    • Modelling and predicting building's energy use with artificial neural networks: methods and results
    • Karatasou S., Santamouris M., Geros V. Modelling and predicting building's energy use with artificial neural networks: methods and results. Energy Buildings 2006, 38:949-958.
    • (2006) Energy Buildings , vol.38 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 8
    • 0028714841 scopus 로고
    • Artificial neural networks backpropagation model with three phase annealing developed for the building energy predictor shootout
    • Kawashima M. Artificial neural networks backpropagation model with three phase annealing developed for the building energy predictor shootout. ASHRAE Trans. 1994, 100(2):1096-1103.
    • (1994) ASHRAE Trans. , vol.100 , Issue.2 , pp. 1096-1103
    • Kawashima, M.1
  • 9
    • 77952959540 scopus 로고    scopus 로고
    • Modelling the energy consumption of buildings by means of neural networks, in: Proceeding of CESA 96: symposium on control, optimisation and supervision
    • M.R.B. Breekweg, P. Gruber, Modelling the energy consumption of buildings by means of neural networks, in: Proceeding of CESA 96: symposium on control, optimisation and supervision, vol. 1, 1996, pp. 450-455.
    • (1996) , vol.1 , pp. 450-455
    • Breekweg, M.R.B.1    Gruber, P.2
  • 10
    • 0034461103 scopus 로고    scopus 로고
    • Development of a generalized neural network model to detect faults in building energy performance-part I, part II
    • Breekweg M.R.B., Gruber P., Ahmed O. Development of a generalized neural network model to detect faults in building energy performance-part I, part II. ASHRAE Trans. 2000, 106:61-93.
    • (2000) ASHRAE Trans. , vol.106 , pp. 61-93
    • Breekweg, M.R.B.1    Gruber, P.2    Ahmed, O.3
  • 11
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • Gonzales P.A., Zamarreno J.M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Buildings 2005, 37:595-601.
    • (2005) Energy Buildings , vol.37 , pp. 595-601
    • Gonzales, P.A.1    Zamarreno, J.M.2
  • 12
    • 0742324118 scopus 로고    scopus 로고
    • Modelling greenhouse temperature using system identification by means of neural networks
    • Frausto H.U., Pieters J.G. Modelling greenhouse temperature using system identification by means of neural networks. Neurocomputing 2004, 56:423-428.
    • (2004) Neurocomputing , vol.56 , pp. 423-428
    • Frausto, H.U.1    Pieters, J.G.2
  • 13
    • 63049115986 scopus 로고    scopus 로고
    • Prediction of indoor temperature and relative humidity using neural network models: model comparison
    • Lu T., Viljanen M. Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Comput. Appl. 2009, 18:345-357.
    • (2009) Neural Comput. Appl. , vol.18 , pp. 345-357
    • Lu, T.1    Viljanen, M.2
  • 14
    • 33751055006 scopus 로고    scopus 로고
    • Artificial neural network models for indoor temperature prediction: investigations in two buildings
    • Thomas B., Mohseni M.S. Artificial neural network models for indoor temperature prediction: investigations in two buildings. Neural Comput. Appl. 2007, 16:81-89.
    • (2007) Neural Comput. Appl. , vol.16 , pp. 81-89
    • Thomas, B.1    Mohseni, M.S.2
  • 15
    • 39149127282 scopus 로고    scopus 로고
    • Modelling of tropical greenhouse temperature by autoregressive and neural network models
    • Patil S.L., Tantau H.J., Salokhe V.M. Modelling of tropical greenhouse temperature by autoregressive and neural network models. Biosyst. Eng. 2008, 99:423-431.
    • (2008) Biosyst. Eng. , vol.99 , pp. 423-431
    • Patil, S.L.1    Tantau, H.J.2    Salokhe, V.M.3
  • 16
    • 2342635095 scopus 로고    scopus 로고
    • A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building
    • Mechaqrane A., Zouak M. A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Comput. Appl. 2004, 13:32-37.
    • (2004) Neural Comput. Appl. , vol.13 , pp. 32-37
    • Mechaqrane, A.1    Zouak, M.2
  • 17
    • 0036983779 scopus 로고    scopus 로고
    • Application of an artificial neural network for modelling the thermal dynamics of a building's space and its heating system
    • Gouda M.M., Danaher S., Underwood C.P. Application of an artificial neural network for modelling the thermal dynamics of a building's space and its heating system. Math. Computer Model. Dyn. Syst. 2002, 8:333-344.
    • (2002) Math. Computer Model. Dyn. Syst. , vol.8 , pp. 333-344
    • Gouda, M.M.1    Danaher, S.2    Underwood, C.P.3
  • 18
    • 33645386775 scopus 로고    scopus 로고
    • Estimation of operative temperature in buildings using artificial neural networks
    • Mohseni M.S., Thomas B., Fahlen P. Estimation of operative temperature in buildings using artificial neural networks. Energy Buildings 2006, 38:635-640.
    • (2006) Energy Buildings , vol.38 , pp. 635-640
    • Mohseni, M.S.1    Thomas, B.2    Fahlen, P.3
  • 19
  • 20
    • 10844288841 scopus 로고    scopus 로고
    • Development of an enthalpy and carbon dioxide based demand control ventilation for indoor air quality and energy savings with neural networks control
    • Chau C.Y.H., Hu J.S. Development of an enthalpy and carbon dioxide based demand control ventilation for indoor air quality and energy savings with neural networks control. Indoor Built Environ. 2004, 13:463-475.
    • (2004) Indoor Built Environ. , vol.13 , pp. 463-475
    • Chau, C.Y.H.1    Hu, J.S.2
  • 24
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Menezes J.M.P., Barreto G.A. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71:3335-3343.
    • (2008) Neurocomputing , vol.71 , pp. 3335-3343
    • Menezes, J.M.P.1    Barreto, G.A.2
  • 25
    • 0026868901 scopus 로고
    • Long-term prediction of chemical processes using recurrent neural networks: a parallel training approach
    • Su H.T., McAvoy T.J., Werbo P. Long-term prediction of chemical processes using recurrent neural networks: a parallel training approach. Ind. Eng. Chem. Res. 1992, 31:1338-1352.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 1338-1352
    • Su, H.T.1    McAvoy, T.J.2    Werbo, P.3
  • 26
    • 77952959043 scopus 로고    scopus 로고
    • Thermal Behaviour Model Identification for Three Different Office Buildings, Ph.D. Thesis, Brunel University, United Kingdom.
    • G. Mustafaraj, Thermal Behaviour Model Identification for Three Different Office Buildings, Ph.D. Thesis, Brunel University, United Kingdom, 2008.
    • (2008)
    • Mustafaraj, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.