메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Active learning for electrodermal activity classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ITERATIVE METHODS; LEARNING SYSTEMS; PHYSIOLOGICAL MODELS; SIGNAL PROCESSING;

EID: 84963959603     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SPMB.2015.7405467     Document Type: Conference Paper
Times cited : (28)

References (32)
  • 1
    • 42949088600 scopus 로고    scopus 로고
    • Assessing the potential of electrodermal activity as an alternative access pathway
    • S. Blain et al. Assessing the potential of electrodermal activity as an alternative access pathway. Medical engineering & physics, 30(4): 498-505, 2008.
    • (2008) Medical Engineering & Physics , vol.30 , Issue.4 , pp. 498-505
    • Blain, S.1
  • 3
    • 0038399423 scopus 로고    scopus 로고
    • Query learning with large margin classifiers
    • C. Campbell et al. Query learning with large margin classifiers. In ICML, pages 111-118, 2000.
    • (2000) ICML , pp. 111-118
    • Campbell, C.1
  • 4
    • 84863352687 scopus 로고    scopus 로고
    • An empirical study of the behavior of active learning for word sense disambiguation
    • ACL
    • J. Chen et al. An empirical study of the behavior of active learning for word sense disambiguation. In Proc. of HLT/NAACL, pages 120-127. ACL, 2006.
    • (2006) Proc. of HLT/NAACL , pp. 120-127
    • Chen, J.1
  • 5
    • 84963953796 scopus 로고    scopus 로고
    • Wavelet-based motion artifact removal for electrodermal activity
    • W. Chen et al. Wavelet-based motion artifact removal for electrodermal activity. In EMBC. IEEE, 2015.
    • (2015) EMBC. IEEE
    • Chen, W.1
  • 9
    • 80054844532 scopus 로고    scopus 로고
    • Call center stress recognition with person-specific models
    • Springer
    • J. Hernandez et al. Call center stress recognition with person-specific models. In ACII, pages 125-134. Springer, 2011.
    • (2011) ACII , pp. 125-134
    • Hernandez, J.1
  • 10
    • 84908590744 scopus 로고    scopus 로고
    • Using electrodermal activity to recognize ease of engagement in children during social interactions
    • ACM
    • J. Hernandez et al. Using electrodermal activity to recognize ease of engagement in children during social interactions. In Pervasive and Ubiquitous Computing, pages 307-317. ACM, 2014.
    • (2014) Pervasive and Ubiquitous Computing , pp. 307-317
    • Hernandez, J.1
  • 11
    • 7444256214 scopus 로고    scopus 로고
    • Using cluster-based sampling to select initial training set for active learning in text classification
    • Springer
    • J. Kang et al. Using cluster-based sampling to select initial training set for active learning in text classification. In Advances in knowledge discovery and data mining, pages 384-388. Springer, 2004.
    • (2004) Advances in Knowledge Discovery and Data Mining , pp. 384-388
    • Kang, J.1
  • 12
    • 84879684634 scopus 로고    scopus 로고
    • Towards long term monitoring of electrodermal activity in daily life
    • C. Kappeler-Setz et al. Towards long term monitoring of electrodermal activity in daily life. Pervasive and Ubiquitous Computing, 17(2): 261-271, 2013.
    • (2013) Pervasive and Ubiquitous Computing , vol.17 , Issue.2 , pp. 261-271
    • Kappeler-Setz, C.1
  • 13
    • 84889071323 scopus 로고    scopus 로고
    • Smart technologies for long-term stress monitoring at work
    • IEEE
    • R. Kocielnik et al. Smart technologies for long-term stress monitoring at work. In Comput. Based Medical Syst., pages 53-58. IEEE, 2013.
    • (2013) Comput. Based Medical Syst. , pp. 53-58
    • Kocielnik, R.1
  • 15
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • Springer-Verlag New York, Inc.
    • D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In SIGIR Forum, pages 3-12. Springer-Verlag New York, Inc., 1994.
    • (1994) SIGIR Forum , pp. 3-12
    • Lewis, D.D.1    Gale, W.A.2
  • 16
    • 84859972933 scopus 로고    scopus 로고
    • Signal quality indices and data fusion for determining acceptability of electrocardiograms collected in noisy ambulatory environments
    • Q. Li et al. Signal quality indices and data fusion for determining acceptability of electrocardiograms collected in noisy ambulatory environments. Computing in Cardiology, 38, 2011.
    • (2011) Computing in Cardiology , pp. 38
    • Li, Q.1
  • 17
    • 84909581069 scopus 로고    scopus 로고
    • A machine learning approach to multi-level ECG signal quality classification
    • Q. Li, C. Rajagopalan, and G. D. Clifford. A machine learning approach to multi-level ecg signal quality classification. Computer methods and programs in biomedicine, 117(3): 435-447, 2014.
    • (2014) Computer Methods and Programs in Biomedicine , vol.117 , Issue.3 , pp. 435-447
    • Li, Q.1    Rajagopalan, C.2    Clifford, G.D.3
  • 18
    • 0030899656 scopus 로고    scopus 로고
    • Decomposing skin conductance into tonic and phasic components
    • C. L. Lim et al. Decomposing skin conductance into tonic and phasic components. Int. J. of Psychophysiology, 25(2): 97-109, 1997.
    • (1997) Int. J. of Psychophysiology , vol.25 , Issue.2 , pp. 97-109
    • Lim, C.L.1
  • 19
    • 84992053534 scopus 로고    scopus 로고
    • Active learning strategies for support vector machines, application to temporal relation classification
    • S. A. Mirroshandel et al. Active learning strategies for support vector machines, application to temporal relation classification. In IJCNLP, pages 56-64, 2011.
    • (2011) IJCNLP , pp. 56-64
    • Mirroshandel, S.A.1
  • 21
    • 84909981414 scopus 로고    scopus 로고
    • Quantitative analysis of wrist electrodermal activity during sleep
    • A. Sano et al. Quantitative analysis of wrist electrodermal activity during sleep. Int. J. of Psychophysiology, 94(3): 382-389, 2014.
    • (2014) Int. J. of Psychophysiology , vol.94 , Issue.3 , pp. 382-389
    • Sano, A.1
  • 22
    • 84998997179 scopus 로고    scopus 로고
    • Discriminating high vs low academic performance, self-reported sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones
    • A. Sano et al. Discriminating high vs low academic performance, self-reported sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In Body Sensor Networks, 2015.
    • (2015) Body Sensor Networks
    • Sano, A.1
  • 23
    • 84893329956 scopus 로고    scopus 로고
    • Stress recognition using wearable sensors and mobile phones
    • IEEE
    • A. Sano and R. Picard. Stress recognition using wearable sensors and mobile phones. In ACII, pages 671-676. IEEE, 2013.
    • (2013) ACII , pp. 671-676
    • Sano, A.1    Picard, R.2
  • 24
    • 84884628576 scopus 로고    scopus 로고
    • Recognition of sleep dependent memory consolidation with multi-modal sensor data
    • IEEE
    • A. Sano and R. W. Picard. Recognition of sleep dependent memory consolidation with multi-modal sensor data. In Body Sensor Networks. IEEE, 2013.
    • (2013) Body Sensor Networks
    • Sano, A.1    Picard, R.W.2
  • 25
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Citeseer
    • G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In ICML, pages 839-846. Citeseer, 2000.
    • (2000) ICML , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 26
    • 0034307864 scopus 로고    scopus 로고
    • The development of a software program for analyzing spontaneous and externally elicited skin conductance changes in infants and adults
    • H. Storm et al. The development of a software program for analyzing spontaneous and externally elicited skin conductance changes in infants and adults. Clin. Neurophysiology, 111(10): 1889-1898, 2000.
    • (2000) Clin. Neurophysiology , vol.111 , Issue.10 , pp. 1889-1898
    • Storm, H.1
  • 27
    • 85014047974 scopus 로고    scopus 로고
    • Feature extraction and classification for ECG signal processing based on artificial neural network and machine learning approach
    • S. Subbiah et al. Feature extraction and classification for ecg signal processing based on artificial neural network and machine learning approach. In Proc. of ICIDRET, 2015.
    • (2015) Proc. of ICIDRET
    • Subbiah, S.1
  • 28
    • 84963969388 scopus 로고    scopus 로고
    • Automatic identification of artifacts in electrodermal activity data
    • S. Taylor, N. Jaques, et al. Automatic identification of artifacts in electrodermal activity data. EMBC. IEEE, 2015.
    • (2015) EMBC. IEEE
    • Taylor, S.1    Jaques, N.2
  • 29
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. KoUer. Support vector machine active learning with applications to text classification. The Journal of Machine Learning Research, 2: 45-66, 2002.
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    KoUer, D.2
  • 30
    • 79960889410 scopus 로고    scopus 로고
    • Automatic classification of artifactual ica-components for artifact removal in EEG signals
    • I. Winkler et al. Automatic classification of artifactual ica-components for artifact removal in eeg signals. Behavioral and Brain Functions, 7(1): 30, 2011.
    • (2011) Behavioral and Brain Functions , vol.7 , Issue.1 , pp. 30
    • Winkler, I.1
  • 31
    • 0028546845 scopus 로고
    • Wavelet transform domain filters: A spatially selective noise filtration technique
    • Y. Xu et al. Wavelet transform domain filters: a spatially selective noise filtration technique. Image Processing, 3(6): 747-758, 1994.
    • (1994) Image Processing , vol.3 , Issue.6 , pp. 747-758
    • Xu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.