-
1
-
-
84882279850
-
Collaborative hyper-parameter tuning
-
R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, 'Collaborative hyper-parameter tuning', in Proc. of ICML, (2013).
-
(2013)
Proc. of ICML
-
-
Bardenet, R.1
Brendel, M.2
Kégl, B.3
Sebag, M.4
-
2
-
-
84908267236
-
Discovering task neighbourhoods through landmark learning performances
-
Springer September
-
H. Bensusan and C. Giraud-Carrier, 'Discovering task neighbourhoods through landmark learning performances', in Proc. of 4th PKDD. Springer, (September 2000).
-
(2000)
Proc. of 4th PKDD
-
-
Bensusan, H.1
Giraud-Carrier, C.2
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, 'Algorithms for hyper-parameter optimization', in Proc. of NIPS, (2011).
-
(2011)
Proc. of NIPS
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
4
-
-
84857855190
-
Random search for hyper-parameter optimization
-
February
-
J. Bergstra and Y. Bengio, 'Random search for hyper-parameter optimization', JMLR, 13, (February 2012).
-
(2012)
JMLR
, vol.13
-
-
Bergstra, J.1
Bengio, Y.2
-
5
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D. D. Cox, 'Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures', in Proc. of ICML, (2013).
-
(2013)
Proc. of ICML
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
7
-
-
80053159627
-
-
CoRR, abs/1012.2599
-
E. Brochu, V. M. Cora, and N. de Freitas, 'A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning', CoRR, abs/1012.2599, (2010).
-
(2010)
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
9
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Flutter, J. Bergstra, J. Snoek, H. H. Hoos, and K. Leyton-Brown, 'Towards an empirical foundation for assessing bayesian optimization of hyperparameters', in NIPS workshop on Bayesian Optimization, (2013).
-
(2013)
NIPS Workshop on Bayesian Optimization
-
-
Eggensperger, K.1
Feurer, M.2
Flutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.H.6
Leyton-Brown, K.7
-
10
-
-
82455210873
-
Combining meta-learning and search techniques to select parameters for support vector machines
-
T.A.F. Gomes, R.B.C. Prudêncio, C. Soares, A. Rossi, and A. Carvalho, 'Combining meta-learning and search techniques to select parameters for support vector machines', Neurocomputing, 75(1), (2012).
-
(2012)
Neurocomputing
, vol.75
, Issue.1
-
-
Gomes, T.A.F.1
Prudêncio, R.B.C.2
Soares, C.3
Rossi, A.4
Carvalho, A.5
-
11
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and LH. Witten, 'The WEKA data mining software: an update', ACM SIGKDD Explorations Newsletter, 11(1), 10-18, (2009).
-
(2009)
ACM SIGKDD Explorations Newsletter
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, L.H.6
-
12
-
-
84864947871
-
Entropy search for information-efficient global optimization
-
P. Hennig and C. Schuler, 'Entropy search for information-efficient global optimization', JMLR, 13, (2012).
-
(2012)
JMLR
, vol.13
-
-
Hennig, P.1
Schuler, C.2
-
14
-
-
84856930049
-
Sequential model-based optimization for general algorithm configuration
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown, 'Sequential model-based optimization for general algorithm configuration', in Proc. of LION-5, (2011).
-
(2011)
Proc. of LION-5
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
15
-
-
84887848457
-
Algorithm runtime prediction: Methods and evaluation
-
(0)
-
F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, 'Algorithm runtime prediction: Methods and evaluation', JAIR, 206(0), 79-111, (2014).
-
(2014)
JAIR
, vol.206
, pp. 79-111
-
-
Hutter, F.1
Xu, L.2
Hoos, H.H.3
Leyton-Brown, K.4
-
16
-
-
0000561424
-
Efficient global optimization of expensive black box functions
-
D.R. Jones, M. Schonlau, and W. Welch, 'Efficient global optimization of expensive black box functions', Journal of Global Optimization, 13, (1998).
-
(1998)
Journal of Global Optimization
, vol.13
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.3
-
18
-
-
84908279482
-
Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn
-
B. Komer, J. Bergstra, and C. Eliasmith, 'Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn', in ICML workshop on AutoML, (2014).
-
(2014)
ICML Workshop on AutoML
-
-
Komer, B.1
Bergstra, J.2
Eliasmith, C.3
-
20
-
-
0003612091
-
-
Ellis Horwood
-
Machine Learning, Neural and Statistical Classification, eds., Donald Mchie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, Ellis Horwood, 1994.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Mchie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
Campbell, J.4
-
21
-
-
84873113300
-
Combining meta-learning with multi-objective particle swarm algorithms for SVM parameter selection: An experimental analysis
-
P.B.C. Miranda, R.B.C. Prudêncio, A. Carvalho, and C. Soares, 'Combining meta-learning with multi-objective particle swarm algorithms for SVM parameter selection: An experimental analysis', in Brazilian Symposium on Neural Networks, (2012).
-
(2012)
Brazilian Symposium on Neural Networks
-
-
Miranda, P.B.C.1
Prudêncio, R.B.C.2
Carvalho, A.3
Soares, C.4
-
22
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, 'Scikit-learn: Machine learning in Python', JMLR, 12, (2011).
-
(2011)
JMLR
, vol.12
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
26
-
-
84862009037
-
Meta-learning for evolutionary parameter optimization of classifiers
-
M. Reif, F. Shafait, and A. Dengel, 'Meta-learning for evolutionary parameter optimization of classifiers', Machine Learning, 87, (2012).
-
(2012)
Machine Learning
, vol.87
-
-
Reif, M.1
Shafait, F.2
Dengel, A.3
-
28
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
Bernhard Scholkopf and Alexander J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
29
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R.P Adams, 'Practical bayesian optimization of machine learning algorithms', in Proc. of NIPS, (2012).
-
(2012)
Proc. of NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
30
-
-
0013152012
-
Zoomed ranking: Selection of classification algorithms based on relevant performance information
-
Springer
-
C. Soares and PB. Brazdil, 'Zoomed ranking: Selection of classification algorithms based on relevant performance information', in Proc. of PKDD'00, Springer, (2000).
-
(2000)
Proc. of PKDD'00
-
-
Soares, C.1
Brazdil, P.B.2
-
31
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
N. Srinivas, A. Krause, S. Kakade, and M. Seeger, 'Gaussian process optimization in the bandit setting: No regret and experimental design', in Proc. of ICML, (2010).
-
(2010)
Proc. of ICML
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
33
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms', in Proc. of KDD'13, (2013).
-
(2013)
Proc. of KDD'13
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
34
-
-
84908282005
-
OpenML: A collaborative science platform
-
J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer, P. Winter, B. Wiswedel, M. R. Berthold, and J. Vanschoren, 'OpenML: a collaborative science platform', in Proc. of ECML/PKDD'13, (2013).
-
(2013)
Proc. of ECML/PKDD'13
-
-
Van, J.N.1
Rijn, B.B.2
Torgo, L.3
Gao, B.4
Umaashankar, V.5
Fischer, S.6
Winter, P.7
Wiswedel, B.8
Berthold, M.R.9
Vanschoren, J.10
-
35
-
-
84944206615
-
Efficient transfer learning method for automatic hyperparameter tuning
-
D. Yogatama and G. Mann, 'Efficient transfer learning method for automatic hyperparameter tuning', in Proc. of AISTATS, (2014).
-
(2014)
Proc. of AISTATS
-
-
Yogatama, D.1
Mann, G.2
|