메뉴 건너뛰기




Volumn 1201, Issue , 2014, Pages 3-10

Using meta-learning to initialize Bayesian optimization of hyperparameters

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84908297240     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (64)

References (35)
  • 2
    • 84908267236 scopus 로고    scopus 로고
    • Discovering task neighbourhoods through landmark learning performances
    • Springer September
    • H. Bensusan and C. Giraud-Carrier, 'Discovering task neighbourhoods through landmark learning performances', in Proc. of 4th PKDD. Springer, (September 2000).
    • (2000) Proc. of 4th PKDD
    • Bensusan, H.1    Giraud-Carrier, C.2
  • 4
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • February
    • J. Bergstra and Y. Bengio, 'Random search for hyper-parameter optimization', JMLR, 13, (February 2012).
    • (2012) JMLR , vol.13
    • Bergstra, J.1    Bengio, Y.2
  • 5
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • J. Bergstra, D. Yamins, and D. D. Cox, 'Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures', in Proc. of ICML, (2013).
    • (2013) Proc. of ICML
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 10
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • T.A.F. Gomes, R.B.C. Prudêncio, C. Soares, A. Rossi, and A. Carvalho, 'Combining meta-learning and search techniques to select parameters for support vector machines', Neurocomputing, 75(1), (2012).
    • (2012) Neurocomputing , vol.75 , Issue.1
    • Gomes, T.A.F.1    Prudêncio, R.B.C.2    Soares, C.3    Rossi, A.4    Carvalho, A.5
  • 12
    • 84864947871 scopus 로고    scopus 로고
    • Entropy search for information-efficient global optimization
    • P. Hennig and C. Schuler, 'Entropy search for information-efficient global optimization', JMLR, 13, (2012).
    • (2012) JMLR , vol.13
    • Hennig, P.1    Schuler, C.2
  • 14
    • 84856930049 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • F. Hutter, H. H. Hoos, and K. Leyton-Brown, 'Sequential model-based optimization for general algorithm configuration', in Proc. of LION-5, (2011).
    • (2011) Proc. of LION-5
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 15
    • 84887848457 scopus 로고    scopus 로고
    • Algorithm runtime prediction: Methods and evaluation
    • (0)
    • F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, 'Algorithm runtime prediction: Methods and evaluation', JAIR, 206(0), 79-111, (2014).
    • (2014) JAIR , vol.206 , pp. 79-111
    • Hutter, F.1    Xu, L.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 18
    • 84908279482 scopus 로고    scopus 로고
    • Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn
    • B. Komer, J. Bergstra, and C. Eliasmith, 'Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn', in ICML workshop on AutoML, (2014).
    • (2014) ICML Workshop on AutoML
    • Komer, B.1    Bergstra, J.2    Eliasmith, C.3
  • 19
    • 84982135410 scopus 로고    scopus 로고
    • Selecting classification algorithms with active testing on similar datasets
    • Rui Leite, Pavel Brazdil, and Joaquin Vanschoren, 'Selecting classification algorithms with active testing on similar datasets', in 5th PLAN-LEARN WORKSHOP at ECAI, (2012).
    • (2012) 5th PLAN-LEARN WORKSHOP at ECAI
    • Leite, R.1    Brazdil, P.2    Vanschoren, J.3
  • 21
    • 84873113300 scopus 로고    scopus 로고
    • Combining meta-learning with multi-objective particle swarm algorithms for SVM parameter selection: An experimental analysis
    • P.B.C. Miranda, R.B.C. Prudêncio, A. Carvalho, and C. Soares, 'Combining meta-learning with multi-objective particle swarm algorithms for SVM parameter selection: An experimental analysis', in Brazilian Symposium on Neural Networks, (2012).
    • (2012) Brazilian Symposium on Neural Networks
    • Miranda, P.B.C.1    Prudêncio, R.B.C.2    Carvalho, A.3    Soares, C.4
  • 26
    • 84862009037 scopus 로고    scopus 로고
    • Meta-learning for evolutionary parameter optimization of classifiers
    • M. Reif, F. Shafait, and A. Dengel, 'Meta-learning for evolutionary parameter optimization of classifiers', Machine Learning, 87, (2012).
    • (2012) Machine Learning , vol.87
    • Reif, M.1    Shafait, F.2    Dengel, A.3
  • 29
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R.P Adams, 'Practical bayesian optimization of machine learning algorithms', in Proc. of NIPS, (2012).
    • (2012) Proc. of NIPS
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 30
    • 0013152012 scopus 로고    scopus 로고
    • Zoomed ranking: Selection of classification algorithms based on relevant performance information
    • Springer
    • C. Soares and PB. Brazdil, 'Zoomed ranking: Selection of classification algorithms based on relevant performance information', in Proc. of PKDD'00, Springer, (2000).
    • (2000) Proc. of PKDD'00
    • Soares, C.1    Brazdil, P.B.2
  • 31
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. Kakade, and M. Seeger, 'Gaussian process optimization in the bandit setting: No regret and experimental design', in Proc. of ICML, (2010).
    • (2010) Proc. of ICML
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 33
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
    • C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms', in Proc. of KDD'13, (2013).
    • (2013) Proc. of KDD'13
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 35
    • 84944206615 scopus 로고    scopus 로고
    • Efficient transfer learning method for automatic hyperparameter tuning
    • D. Yogatama and G. Mann, 'Efficient transfer learning method for automatic hyperparameter tuning', in Proc. of AISTATS, (2014).
    • (2014) Proc. of AISTATS
    • Yogatama, D.1    Mann, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.