메뉴 건너뛰기




Volumn 2015-November, Issue , 2015, Pages 4947-4950

To be or not to be convex? A study on regularization in hyperspectral image classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84962601646     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2015.7326942     Document Type: Conference Paper
Times cited : (5)

References (16)
  • 1
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Proc. Mag., vol. 31, no. 1, pp. 45-54, 2014.
    • (2014) IEEE Signal Proc. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 2
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 3
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 5
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification via kernel sparse representation," IEEE Trans. Geosci. Rem. Sens., vol. 51, no. 1, pp. 217-231, 2013.
    • (2013) IEEE Trans. Geosci. Rem. Sens. , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 6
    • 84901820174 scopus 로고    scopus 로고
    • Automatic feature learning for spatiospectral image classification with sparse SVM
    • D. Tuia, M. Volpi, M. Dalla Mura, A. Rakotomamonjy, and R. Flamary, "Automatic feature learning for spatiospectral image classification with sparse SVM," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6062-6074, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6062-6074
    • Tuia, D.1    Volpi, M.2    Dalla Mura, M.3    Rakotomamonjy, A.4    Flamary, R.5
  • 7
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • T. Zhang, "Analysis of multi-stage convex relaxation for sparse regularization," J. Mach. Learn. Res., vol. 11, pp. 1081-1107, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 9
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle, "Training a support vector machine in the primal," Neural Comput., vol. 19, no. 5, pp. 1155-1178, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 10
    • 84919931898 scopus 로고    scopus 로고
    • Boosting stochastic Newton with entropy constraint for large-scale image classification
    • Stockholm, Sweden
    • W. Bel Haj Ali, R. Nock, and M. Barlaud, "Boosting stochastic newton with entropy constraint for large-scale image classification," in Proc. ICPR, Stockholm, Sweden, 2014.
    • (2014) Proc. ICPR
    • Bel Haj Ali, W.1    Nock, R.2    Barlaud, M.3
  • 11
    • 84962487837 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc. B, pp. 267-288, 1996.
    • (1996) J. Royal Stat. Soc. B , pp. 267-288
    • Tibshirani, R.1
  • 14
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
    • Atlanta, GE
    • P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye, "A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems," in Proc. ICML, Atlanta, GE, 2013.
    • (2013) Proc. ICML
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.Z.4    Ye, J.5
  • 15
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • M. M. Crawford, D. Tuia, and L. H. Hyang, "Active learning: Any value for classification of remotely sensed data?," Proceedings of the IEEE, vol. 101, no. 3, pp. 593-608, 2013.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.M.1    Tuia, D.2    Hyang, L.H.3
  • 16
    • 84911930379 scopus 로고    scopus 로고
    • Report on the 2013 IEEE GRSS data fusion contest: Fusion of hyperspectral and LiDAR data
    • F. Pacifici, Q. Du, and S. Prasad, "Report on the 2013 IEEE GRSS data fusion contest: Fusion of hyperspectral and LiDAR data," IEEE Remote Sens. Mag., vol. 1, no. 3, pp. 36-38, 2013.
    • (2013) IEEE Remote Sens. Mag. , vol.1 , Issue.3 , pp. 36-38
    • Pacifici, F.1    Du, Q.2    Prasad, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.