-
1
-
-
0036887936
-
Fractional kinetics and anomalous transport
-
Zaslavsky G.M. Fractional kinetics and anomalous transport. Phys Rep 2002, 371:461-580.
-
(2002)
Phys Rep
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
3
-
-
19944384253
-
Dynamics with low-level fractionality
-
Tarasov V.E., Zaslavsky G.M. Dynamics with low-level fractionality. Phys A 2005, 354:249-261.
-
(2005)
Phys A
, vol.354
, pp. 249-261
-
-
Tarasov, V.E.1
Zaslavsky, G.M.2
-
4
-
-
1842535435
-
Fractional FokkerCPlanck equation for fractal media
-
Tarasov V.E. Fractional FokkerCPlanck equation for fractal media. Chaos 2004, 14:123-127.
-
(2004)
Chaos
, vol.14
, pp. 123-127
-
-
Tarasov, V.E.1
-
5
-
-
41349084525
-
Fractional systems and fractional Bogoliubov hierarchy equations
-
Tarasov V.E. Fractional systems and fractional Bogoliubov hierarchy equations. Phys Rev E 2005, 71:011102.
-
(2005)
Phys Rev E
, vol.71
, pp. 011102
-
-
Tarasov, V.E.1
-
6
-
-
20444376273
-
Fractional Liouville and BBGKI equations
-
Tarasov V.E. Fractional Liouville and BBGKI equations. J Phys: Conf Ser 2005, 7:17-33.
-
(2005)
J Phys: Conf Ser
, vol.7
, pp. 17-33
-
-
Tarasov, V.E.1
-
7
-
-
0022492943
-
The realization of the generalized transfer in a medium with fractal geometry
-
Nigmatullin R. The realization of the generalized transfer in a medium with fractal geometry. Phys Status Solidi B 1986, 133:425-430.
-
(1986)
Phys Status Solidi B
, vol.133
, pp. 425-430
-
-
Nigmatullin, R.1
-
9
-
-
4043151477
-
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 2004, 37:161-208.
-
(2004)
J Phys A
, vol.37
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
14
-
-
36549102254
-
The trace identity, a powerful tool for constructing the hamiltonian structure of integrable systems
-
Tu G.Z. The trace identity, a powerful tool for constructing the hamiltonian structure of integrable systems. J Math Phys 1989, 30:330.
-
(1989)
J Math Phys
, vol.30
, pp. 330
-
-
Tu, G.Z.1
-
15
-
-
0003069487
-
The bi-Hamiltonian structures of the perturbation equations of KdV hierarchy
-
Ma W.X., Fuchssteiner B. The bi-Hamiltonian structures of the perturbation equations of KdV hierarchy. Phys Lett A 1996, 213:49.
-
(1996)
Phys Lett A
, vol.213
, pp. 49
-
-
Ma, W.X.1
Fuchssteiner, B.2
-
16
-
-
17744367873
-
Integrable couplings of vector AKNS soliton equations
-
Ma W.X. Integrable couplings of vector AKNS soliton equations. J Math Phys 2005, 46:033507.
-
(2005)
J Math Phys
, vol.46
, pp. 033507
-
-
Ma, W.X.1
-
17
-
-
0043148026
-
A Hierarchy of integrable Hamiltonian equations
-
Guo F.K. A Hierarchy of integrable Hamiltonian equations. Math Appl Sin 2000, 23(2):181-187.
-
(2000)
Math Appl Sin
, vol.23
, Issue.2
, pp. 181-187
-
-
Guo, F.K.1
-
18
-
-
77951537180
-
Two families generalization of AKNS hierarchies and their Hamiltonian structures
-
Wang Y.H., Liang X.Q., Wang H. Two families generalization of AKNS hierarchies and their Hamiltonian structures. Mod Phys Lett B 2010, 24:791-805.
-
(2010)
Mod Phys Lett B
, vol.24
, pp. 791-805
-
-
Wang, Y.H.1
Liang, X.Q.2
Wang, H.3
-
19
-
-
41549127572
-
A supertrace identity and its applications to superintegrable systems
-
Ma W.X., He J.S., Qin Z.Y. A supertrace identity and its applications to superintegrable systems. J Math Phys 2008, 49:033511.
-
(2008)
J Math Phys
, vol.49
, pp. 033511
-
-
Ma, W.X.1
He, J.S.2
Qin, Z.Y.3
-
20
-
-
67349253458
-
Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy
-
Dong H.H., Wang X.Z. Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy. Commun Nonlinear Sci Numer Simul 2009, 14:4071-4077.
-
(2009)
Commun Nonlinear Sci Numer Simul
, vol.14
, pp. 4071-4077
-
-
Dong, H.H.1
Wang, X.Z.2
-
21
-
-
0035981961
-
A direct method for integrable couplings of TD hierarchy
-
Zhang Y.F., Zhang H.Q. A direct method for integrable couplings of TD hierarchy. J Math Phys 2002, 43:466.
-
(2002)
J Math Phys
, vol.43
, pp. 466
-
-
Zhang, Y.F.1
Zhang, H.Q.2
-
22
-
-
0034311570
-
Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation
-
Fan E.G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J Math Phys 2000, 41:7769.
-
(2000)
J Math Phys
, vol.41
, pp. 7769
-
-
Fan, E.G.1
-
23
-
-
78649358371
-
A new Lie algebra and its related Liouville integrable hierarchies
-
Wang H., Wang X.Z., Liu G.D., Yang J.M. A new Lie algebra and its related Liouville integrable hierarchies. Commun Theor Phys 2010, 54:407-411.
-
(2010)
Commun Theor Phys
, vol.54
, pp. 407-411
-
-
Wang, H.1
Wang, X.Z.2
Liu, G.D.3
Yang, J.M.4
-
24
-
-
79957913431
-
Three nonlinear integrable couplings of the nonlinear Schrodinger equations Commun
-
Wang H., Xia T.C. Three nonlinear integrable couplings of the nonlinear Schrodinger equations Commun. Nonlinear Sci Numer Simulat 2011, 16:4232-C4237.
-
(2011)
Nonlinear Sci Numer Simulat
, vol.16
-
-
Wang, H.1
Xia, T.C.2
-
25
-
-
80052348829
-
Conservation laws for a super G-CJ hierarchy with self-consistent sources Commun
-
Wang H., Xia T.C. Conservation laws for a super G-CJ hierarchy with self-consistent sources Commun. Nonlinear Sci Numer Simulat 2012, 17:566-C572.
-
(2012)
Nonlinear Sci Numer Simulat
, vol.17
-
-
Wang, H.1
Xia, T.C.2
-
26
-
-
70149086250
-
Integrable coupling system of fractional soliton equation hierarchy
-
Yu F.J. Integrable coupling system of fractional soliton equation hierarchy. Phys Lett A 2009, 373:3730-3733.
-
(2009)
Phys Lett A
, vol.373
, pp. 3730-3733
-
-
Yu, F.J.1
-
27
-
-
80052965259
-
A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy
-
Wu G.C., Zhang S. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy. Phys Lett A 2011, 375:3659-3663.
-
(2011)
Phys Lett A
, vol.375
, pp. 3659-3663
-
-
Wu, G.C.1
Zhang, S.2
-
28
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimension
-
Kolwankar K.M., Gangal A.D. Fractional differentiability of nowhere differentiable functions and dimension. Chaos 1996, 6:505.
-
(1996)
Chaos
, vol.6
, pp. 505
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
29
-
-
0030671988
-
Holder exponents of irregular signals and local fractional derivatives
-
Kolwankar K.M., Gangal A.D. Holder exponents of irregular signals and local fractional derivatives. Pramana J Phys 1997, 48:49.
-
(1997)
Pramana J Phys
, vol.48
, pp. 49
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
30
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K.M., Gangal A.D. Local fractional Fokker-Planck equation. Phys Rev Lett 1998, 80:214.
-
(1998)
Phys Rev Lett
, vol.80
, pp. 214
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
31
-
-
0242719902
-
Scale calculus and the Schrodinger equation
-
Cresson J. Scale calculus and the Schrodinger equation. J Math Phys 2003, 44:4907.
-
(2003)
J Math Phys
, vol.44
, pp. 4907
-
-
Cresson, J.1
-
32
-
-
65249101710
-
Multiscale statistical model of fully-developed turbulence particle accelerations
-
Chen W., Sun H.G. Multiscale statistical model of fully-developed turbulence particle accelerations. Mod Phys Lett B 2009, 23:449.
-
(2009)
Mod Phys Lett B
, vol.23
, pp. 449
-
-
Chen, W.1
Sun, H.G.2
-
33
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl 2006, 51:1367.
-
(2006)
Comput Math Appl
, vol.51
, pp. 1367
-
-
Jumarie, G.1
-
34
-
-
23344444772
-
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
-
Baleanu D., Muslih S.I. Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys Scr 2005, 72:119.
-
(2005)
Phys Scr
, vol.72
, pp. 119
-
-
Baleanu, D.1
Muslih, S.I.2
-
35
-
-
33845669957
-
Fractional hamilton formalism within caputos derivative
-
Baleanu D., Agrawal O.P. Fractional hamilton formalism within caputos derivative. Czech J Phys 2006, 56:1087.
-
(2006)
Czech J Phys
, vol.56
, pp. 1087
-
-
Baleanu, D.1
Agrawal, O.P.2
-
36
-
-
34547165802
-
A fractional action-like variational approach of some classical, quantum and geometrical dynamic
-
El-Nabulsi R.A. A fractional action-like variational approach of some classical, quantum and geometrical dynamic. Int J Appl Math 2005, 17:299.
-
(2005)
Int J Appl Math
, vol.17
, pp. 299
-
-
El-Nabulsi, R.A.1
-
37
-
-
33845306847
-
Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylors series of nondifferentiable functions
-
Jumarie G. Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylors series of nondifferentiable functions. Chaos Solitons Fract 2007, 32:969.
-
(2007)
Chaos Solitons Fract
, vol.32
, pp. 969
-
-
Jumarie, G.1
-
38
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
Almeida R., Malinowska A.B., Torres D.F.M. A fractional calculus of variations for multiple integrals with application to vibrating string. J Math Phys 2010, 51:033503.
-
(2010)
J Math Phys
, vol.51
, pp. 033503
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
39
-
-
33846270372
-
Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function
-
Jumarie G. Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function. J Appl Math Comput 2007, 23:215.
-
(2007)
J Appl Math Comput
, vol.23
, pp. 215
-
-
Jumarie, G.1
-
40
-
-
34250384767
-
Nonlinear evolution equations associated with enegry-dependent Schrödinger potentials
-
Jaulent M., Miodek K. Nonlinear evolution equations associated with enegry-dependent Schrödinger potentials. Lett Math Phys 1976, 1:243.
-
(1976)
Lett Math Phys
, vol.1
, pp. 243
-
-
Jaulent, M.1
Miodek, K.2
|