-
4
-
-
0442320716
-
How to lose at tetris
-
H. Burgiel. How to lose at tetris. Mathematical Gazette, 81:194-200, 1997.
-
(1997)
Mathematical Gazette
, vol.81
, pp. 194-200
-
-
Burgiel, H.1
-
5
-
-
84969807826
-
(Approximate) iterated successive approximations algorithm for sequential decision processes
-
Pelin Canbolat and Uriel Rothblum. (Approximate) iterated successive approximations algorithm for sequential decision processes. Annals of Operations Research, pages 1-12, 2012. ISSN 0254-5330.
-
(2012)
Annals of Operations Research
, pp. 1-12
-
-
Canbolat, P.1
Rothblum, U.2
-
6
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
May, URL
-
C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27:1-27:27, May 2011. ISSN 2157-6904. doi: 10.1145/1961189.1961199. URL http://doi.acm.org/10.1145/1961189.1961199.
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, Issue.3
, pp. 271-2727
-
-
Chang, C.1
Lin, C.2
-
7
-
-
35248818685
-
Tetris is hard, even to approximate
-
E. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to approximate. In Proceedings of the Ninth International Computing and Combinatorics Conference, pages 351-363, 2003.
-
(2003)
Proceedings of the Ninth International Computing and Combinatorics Conference
, pp. 351-363
-
-
Demaine, E.1
Hohenberger, S.2
Liben-Nowell, D.3
-
8
-
-
48349140736
-
Rollout sampling approximate policy iteration
-
C. Dimitrakakis and M. Lagoudakis. Rollout sampling approximate policy iteration. Machine Learning Journal, 72(3):157-171, 2008.
-
(2008)
Machine Learning Journal
, vol.72
, Issue.3
, pp. 157-171
-
-
Dimitrakakis, C.1
Lagoudakis, M.2
-
13
-
-
33744466799
-
Approximate policy iteration with a policy language bias: Solving relational Markov decision processes
-
A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy language bias: Solving relational Markov decision processes. Journal of Artificial Intelligence Research, 25:75-118, 2006.
-
(2006)
Journal of Artificial Intelligence Research
, vol.25
, pp. 75-118
-
-
Fern, A.1
Yoon, S.2
Givan, R.3
-
15
-
-
80053437853
-
Classification-based policy iteration with a critic
-
V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scherrer. Classification-based policy iteration with a critic. In Proceedings of the Twenty-Eighth International Conference on Machine Learning, pages 1049-1056, 2011.
-
(2011)
Proceedings of the Twenty-eighth International Conference on Machine Learning
, pp. 1049-1056
-
-
Gabillon, V.1
Lazaric, A.2
Ghavamzadeh, M.3
Scherrer, B.4
-
18
-
-
84880694195
-
Stable function approximation in dynamic programming
-
G. J. Gordon. Stable function approximation in dynamic programming. In ICML, pages 261-268, 1995.
-
(1995)
ICML
, pp. 261-268
-
-
Gordon, G.J.1
-
20
-
-
0035377566
-
Completely derandomized self-adaptation in evolution strategies
-
N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9:159-195, 2001.
-
(2001)
Evolutionary Computation
, vol.9
, pp. 159-195
-
-
Hansen, N.1
Ostermeier, A.2
-
29
-
-
84962283397
-
Tight performance bounds for approximate modified policy iteration with non-stationary policies
-
1304.5610
-
Boris Lesner and Bruno Scherrer. Tight performance bounds for approximate modified policy iteration with non-stationary policies. CoRR, abs/1304.5610, 2013.
-
(2013)
CoRR
-
-
Lesner, B.1
Scherrer, B.2
-
31
-
-
40949107944
-
p-norm for approximate value iteration
-
p-norm for approximate value iteration. SIAM J. Control and Optimization, 46(2):541-561, 2007.
-
(2007)
SIAM J. Control and Optimization
, vol.46
, Issue.2
, pp. 541-561
-
-
Munos, R.1
-
37
-
-
84877625141
-
Performance bounds for λ-policy iteration and application to the game of tetris
-
B. Scherrer. Performance bounds for λ-policy iteration and application to the game of tetris. Journal of Machine Learning Research, 14:1175-1221, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1175-1221
-
-
Scherrer, B.1
-
39
-
-
84867117249
-
Approximate modified policy iteration
-
B. Scherrer, M. Ghavamzadeh, V. Gabillon, and M. Geist. Approximate modified policy iteration. In Proceedings of the Twenty Ninth International Conference on Machine Learning, pages 1207-1214, 2012.
-
(2012)
Proceedings of the Twenty Ninth International Conference on Machine Learning
, pp. 1207-1214
-
-
Scherrer, B.1
Ghavamzadeh, M.2
Gabillon, V.3
Geist, M.4
-
40
-
-
0028497385
-
An upper bound on the loss from approximate optimal-value functions
-
S. Singh and R. Yee. An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16-3:227-233, 1994.
-
(1994)
Machine Learning
, vol.16-23
, pp. 227-233
-
-
Singh, S.1
Yee, R.2
-
42
-
-
33845344721
-
Learning tetris using the noisy cross-entropy method
-
I. Szita and A. Lorincz. Learning tetris using the noisy cross-entropy method. Neural Computation, 18(12):2936-2941, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.12
, pp. 2936-2941
-
-
Szita, I.1
Lorincz, A.2
-
47
-
-
0029752470
-
Feature-based methods for large scale dynamic programming
-
J. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 22:59-94, 1996.
-
(1996)
Machine Learning
, vol.22
, pp. 59-94
-
-
Tsitsiklis, J.1
Van Roy, B.2
-
48
-
-
0031143730
-
An analysis of temporal-difference learning with function approximation
-
J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42(5):674-690, 1997.
-
(1997)
IEEE Transactions on Automatic Control
, vol.42
, Issue.5
, pp. 674-690
-
-
Tsitsiklis, J.1
Van Roy, B.2
|