메뉴 건너뛰기




Volumn , Issue , 2000, Pages 1001-1007

Apprximate planning in large POMDPs via reusable trajectories

Author keywords

[No Author keywords available]

Indexed keywords

REINFORCEMENT LEARNING;

EID: 84898967749     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (92)

References (10)
  • 3
    • 0002436850 scopus 로고    scopus 로고
    • Tractable inference for complex stochastic processes
    • X. Boyen and D. Roller. Tractable inference for complex stochastic processes. In Proc. UAI, pages 33-42, 1998.
    • (1998) Proc. UAI , pp. 33-42
    • Boyen, X.1    Roller, D.2
  • 4
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and oter learning applications
    • David Haussier. Decision theoretic generalizations of the PAC model for neural net and oter learning applications. Information and Computation, 100:78-150, 1992.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussier, D.1
  • 10
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.