메뉴 건너뛰기




Volumn 2015-February, Issue , 2016, Pages 832-840

Geodesic Convolutional Neural Networks on Riemannian Manifolds

Author keywords

Eigenvalues and eigenfunctions; Geometry; Heating; Kernel; Manifolds; Neural networks; Shape

Indexed keywords

COMPUTER VISION; CONVOLUTION; COST FUNCTIONS; EIGENVALUES AND EIGENFUNCTIONS; GEODESY; GEOMETRY; MATHEMATICAL OPERATORS;

EID: 84961988057     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2015.112     Document Type: Conference Paper
Times cited : (210)

References (50)
  • 1
    • 84856637531 scopus 로고    scopus 로고
    • The wave kernel signature: A quantum mechanical approach to shape analysis
    • 1, 2, 3, 4, 6
    • M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. ICCV, 2011. 1, 2, 3, 4, 6
    • (2011) Proc. ICCV
    • Aubry, M.1    Schlickewei, U.2    Cremers, D.3
  • 2
    • 0003916202 scopus 로고    scopus 로고
    • Shape context: A new descriptor for shape matching and object recognition
    • 1
    • S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape matching and object recognition. In Proc. NIPS, 2000. 1
    • (2000) Proc. NIPS
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 3
    • 84873443879 scopus 로고    scopus 로고
    • Theano: A CPU and GPU math expression compiler
    • June 6
    • J. Bergstra et al. Theano: a CPU and GPU math expression compiler. In Proc. SciPy, June 2010. 6
    • (2010) Proc. SciPy
    • Bergstra, J.1
  • 4
    • 84911376918 scopus 로고    scopus 로고
    • FAUST: Dataset and evaluation for 3D mesh registration
    • 6
    • F. Bogo et al. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR, 2014. 6
    • (2014) Proc. CVPR
    • Bogo, F.1
  • 5
    • 84946711523 scopus 로고    scopus 로고
    • Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks
    • 1, 2,5
    • D. Boscaini et al. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. CGF, 34(5):13-23, 2015. 1, 2, 5
    • (2015) CGF , vol.34 , Issue.5 , pp. 13-23
    • Boscaini, D.1
  • 6
    • 24644437539 scopus 로고
    • Signature verification using a "Siamese" time delay neural network
    • 5
    • J. Bromley et al. Signature verification using a "Siamese" time delay neural network. In Proc. NIPS. 1994. 5
    • (1994) Proc. NIPS
    • Bromley, J.1
  • 8
    • 79551691572 scopus 로고    scopus 로고
    • Shape Google: Geometric words and expressions for invariant shape retrieval
    • 1
    • A. M. Bronstein et al. Shape Google: Geometric words and expressions for invariant shape retrieval. TOG, 30(1):1-20, 2011. 1
    • (2011) TOG , vol.30 , Issue.1 , pp. 1-20
    • Bronstein, A.M.1
  • 9
    • 85083951767 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • 1, 2 5
    • J. Bruna et al. Spectral networks and locally connected networks on graphs. In Proc. ICLR, 2014. 1, 2, 5
    • (2014) Proc. ICLR
    • Bruna, J.1
  • 10
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • 1
    • D. C. Ciresan et al. Deep neural networks segment neuronal membranes in electron microscopy images. In Proc. NIPS, 2012. 1
    • (2012) Proc. NIPS
    • Ciresan, D.C.1
  • 13
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, 2005. 1
    • (2005) Proc. CVPR
    • Dalal, N.1    Triggs, B.2
  • 14
    • 84874025684 scopus 로고    scopus 로고
    • The level set tree on meshes
    • 1
    • J. Digne et al. The level set tree on meshes. In Proc. 3DPVT, 2010. 1
    • (2010) Proc. 3DPVT
    • Digne, J.1
  • 15
    • 0142103254 scopus 로고    scopus 로고
    • On bending invariant signatures for surfaces
    • 1
    • A. Elad and R. Kimmel. On bending invariant signatures for surfaces. PAMI, 25(10):1285-1295, 2003. 1
    • (2003) PAMI , vol.25 , Issue.10 , pp. 1285-1295
    • Elad, A.1    Kimmel, R.2
  • 17
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • 1
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193-202, 1980. 1
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 18
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • 5
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In Proc. CVPR, 2006. 5
    • (2006) Proc. CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 19
    • 0032685832 scopus 로고    scopus 로고
    • Using spin images for efficient object recognition in cluttered 3D scenes
    • 1
    • A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered 3D scenes. PAMI, 21(5):433-449, 1999. 1
    • (1999) PAMI , vol.21 , Issue.5 , pp. 433-449
    • Johnson, A.E.1    Hebert, M.2
  • 20
    • 84925307840 scopus 로고    scopus 로고
    • Learning similarities for rigid and non-rigid object detection
    • 1
    • A. Kanezaki et al. Learning similarities for rigid and non-rigid object detection. In Proc. BMVC, 2014. 1
    • (2014) Proc. BMVC
    • Kanezaki, A.1
  • 22
    • 80051913952 scopus 로고    scopus 로고
    • Blended intrinsic maps
    • 6
    • V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps. TOG, 30(4):1-12, 2011. 6
    • (2011) TOG , vol.30 , Issue.4 , pp. 1-12
    • Kim, V.G.1    Lipman, Y.2    Funkhouser, T.3
  • 23
    • 0032555230 scopus 로고    scopus 로고
    • Computing geodesic paths on manifolds
    • 3
    • R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. PNAS, 95(15):8431-8435, 1998. 3
    • (1998) PNAS , vol.95 , Issue.15 , pp. 8431-8435
    • Kimmel, R.1    Sethian, J.A.2
  • 24
    • 84866699222 scopus 로고    scopus 로고
    • Intrinsic shape context descriptors for deformable shapes
    • 1, 2, 3, 4 6
    • I. Kokkinos et al. Intrinsic shape context descriptors for deformable shapes. In Proc. CVPR, 2012. 1, 2, 3, 4, 6
    • (2012) Proc. CVPR
    • Kokkinos, I.1
  • 25
    • 51949084763 scopus 로고    scopus 로고
    • Scale invariance without scale selection
    • 4
    • I. Kokkinos and A. Yuille. Scale invariance without scale selection. In Proc. CVPR, 2008. 4
    • (2008) Proc. CVPR
    • Kokkinos, I.1    Yuille, A.2
  • 26
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2012. 1
    • (2012) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • 1
    • Y. LeCun et al. Backpropagation applied to handwritten zip code recognition. Neural Comp., 1(4):541-551, 1989. 1
    • (1989) Neural Comp. , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 28
    • 33845430065 scopus 로고    scopus 로고
    • Laplace-Beltrami eigenfunctions towards an algorithm that "understands" geometry
    • 1
    • B. Lévy. Laplace-Beltrami eigenfunctions towards an algorithm that "understands" geometry. In Proc. SMI, 2006. 1
    • (2006) Proc. SMI
    • Lévy, B.1
  • 29
    • 84890362928 scopus 로고    scopus 로고
    • Learning spectral descriptors for deformable shape correspondence
    • 1, 2, 3, 4 6
    • R. Litman and A. M. Bronstein. Learning spectral descriptors for deformable shape correspondence. PAMI, 36(1):170-180, 2014. 1, 2, 3, 4, 6
    • (2014) PAMI , vol.36 , Issue.1 , pp. 170-180
    • Litman, R.1    Bronstein, A.M.2
  • 30
    • 84906686595 scopus 로고    scopus 로고
    • Supervised learning of bag-of-features shape descriptors using sparse coding
    • 1
    • R. Litman et al. Supervised learning of bag-of-features shape descriptors using sparse coding. CGF, 33(5):127-136, 2014. 1
    • (2014) CGF , vol.33 , Issue.5 , pp. 127-136
    • Litman, R.1
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004. 1
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 32
    • 33750103115 scopus 로고    scopus 로고
    • Integral invariants for shape matching
    • 1
    • S. Manay et al. Integral invariants for shape matching. PAMI, 28(10):1602-1618, 2006. 1
    • (2006) PAMI , vol.28 , Issue.10 , pp. 1602-1618
    • Manay, S.1
  • 33
    • 3142736062 scopus 로고    scopus 로고
    • Robust wide-baseline stereo from maximally stable extremal regions
    • 1
    • J. Matas et al. Robust wide-baseline stereo from maximally stable extremal regions. IVC, 22(10):761-767, 2004. 1
    • (2004) IVC , vol.22 , Issue.10 , pp. 761-767
    • Matas, J.1
  • 34
    • 33645783985 scopus 로고    scopus 로고
    • Shape distributions
    • 1
    • R. Osada et al. Shape distributions. TOG, 21(4):807-832, 2002. 1
    • (2002) TOG , vol.21 , Issue.4 , pp. 807-832
    • Osada, R.1
  • 35
    • 84870219115 scopus 로고    scopus 로고
    • Functional maps: A flexible representation of maps between shapes
    • 1,6
    • M. Ovsjanikov et al. Functional maps: a flexible representation of maps between shapes. TOG, 31(4):1-11, 2012. 1, 6
    • (2012) TOG , vol.31 , Issue.4 , pp. 1-11
    • Ovsjanikov, M.1
  • 36
    • 84950826016 scopus 로고
    • Computing discrete minimal surfaces and their conjugates
    • 2
    • U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15-36, 1993. 2
    • (1993) Experimental Mathematics , vol.2 , Issue.1 , pp. 15-36
    • Pinkall, U.1    Polthier, K.2
  • 37
    • 84911398941 scopus 로고    scopus 로고
    • Dense non-rigid shape correspondence using random forests
    • 1, 5 6
    • E. Rodolà et al. Dense non-rigid shape correspondence using random forests. In Proc. CVPR, 2014. 1, 5, 6
    • (2014) Proc. CVPR
    • Rodolà, E.1
  • 38
    • 84919744939 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • 1
    • P. Sermanet et al. OverFeat: Integrated recognition, localization and detection using convolutional networks. In Proc. ICLR, 2014. 1
    • (2014) Proc. ICLR
    • Sermanet, P.1
  • 39
    • 84872027140 scopus 로고    scopus 로고
    • Real-Time human pose recognition in parts from single depth images
    • 1
    • J. Shotton et al. Real-Time human pose recognition in parts from single depth images. Comm. ACM, 56(1):116-124, 2013. 1
    • (2013) Comm. ACM , vol.56 , Issue.1 , pp. 116-124
    • Shotton, J.1
  • 43
    • 79957791911 scopus 로고    scopus 로고
    • Persistence-based segmentation of deformable shapes
    • 1
    • P. Skraba et al. Persistence-based segmentation of deformable shapes. In Proc. NORDIA, 2010. 1
    • (2010) Proc. NORDIA
    • Skraba, P.1
  • 44
    • 84973882748 scopus 로고    scopus 로고
    • Multi-view convolutional neural networks for 3D shape recognition
    • 1
    • H. Su et al. Multi-view convolutional neural networks for 3D shape recognition. In Proc. ICCV, 2015. 1
    • (2015) Proc ICCV
    • Su, H.1
  • 45
    • 70049104712 scopus 로고    scopus 로고
    • A concise and provably informative multi-scale signature based on heat diffusion
    • 1, 2, 4 6
    • J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. CGF, 28(5):1383-1392, 2009. 1, 2, 4, 6
    • (2009) CGF , vol.28 , Issue.5 , pp. 1383-1392
    • Sun, J.1    Ovsjanikov, M.2    Guibas, L.J.3
  • 46
    • 33748781681 scopus 로고    scopus 로고
    • Region covariance: A fast descriptor for detection and classification
    • 4
    • O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In Proc. ECCV, 2006. 4
    • (2006) Proc. ECCV
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 47
    • 85085849087 scopus 로고    scopus 로고
    • Optimal intrinsic descriptors for nonrigid shape analysis
    • 1
    • T. Windheuser et al. Optimal intrinsic descriptors for nonrigid shape analysis. In Proc. BMVC, 2014. 1
    • (2014) Proc. BMVC
    • Windheuser, T.1
  • 48
    • 84946732682 scopus 로고    scopus 로고
    • 3D ShapeNets: A deep representation for volumetric shape modeling
    • 1
    • Z. Wu et al. 3D ShapeNets: A deep representation for volumetric shape modeling. In Proc. CVPR, 2015. 1
    • (2015) Proc. CVPR
    • Wu, Z.1
  • 49
    • 70450203735 scopus 로고    scopus 로고
    • Surface feature detection and description with applications to mesh matching
    • 1
    • A. Zaharescu et al. Surface feature detection and description with applications to mesh matching. In Proc. CVPR, 2009. 1
    • (2009) Proc. CVPR
    • Zaharescu, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.