-
3
-
-
84962445579
-
-
For reviews of the Ritter reactions, see: (a) Krimen, L. 1.; Cota, D. J. In Organic Reactions; Dauben, W. G., Ed.; John Wiley & Sons: New York, 1969; 17, pp 213-325.
-
For reviews of the Ritter reactions, see: (a) Krimen, L. 1.; Cota, D. J. In Organic Reactions; Dauben, W. G., Ed.; John Wiley & Sons: New York, 1969; Vol. 17, pp 213-325.
-
-
-
-
4
-
-
0000818237
-
-
Trost, B. M, Fleming, I, Eds, Pergamon Press: New York
-
(b) Bishop, R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 6, pp 261-300.
-
(1991)
Comprehensive Organic Synthesis
, vol.6
, pp. 261-300
-
-
Bishop, R.1
-
5
-
-
0001916292
-
-
For alternative methodologies developed for the Ritter reaction, see: a
-
For alternative methodologies developed for the Ritter reaction, see: (a) Top, S.; Jaouen, G. J. Org. Chem. 1981, 46, 78-82.
-
(1981)
J. Org. Chem
, vol.46
, pp. 78-82
-
-
Top, S.1
Jaouen, G.2
-
6
-
-
37049123806
-
-
(b) Barton, D. H. R.; Magnus, P. D.; Garbarino, J. A.; Young, R. N. J. Chem. Soc., Perkin Trans. 1 1974, 2101-2107.
-
(1974)
J. Chem. Soc., Perkin Trans. 1
, pp. 2101-2107
-
-
Barton, D.H.R.1
Magnus, P.D.2
Garbarino, J.A.3
Young, R.N.4
-
9
-
-
84962445631
-
-
(e) Firouzabaldi, H.; Sardarian, A. R.; Badparva, H. Synth. Commun. 2000, 30, 601-607.
-
(2000)
Synth. Commun
, vol.30
, pp. 601-607
-
-
Firouzabaldi, H.1
Sardarian, A.R.2
Badparva, H.3
-
11
-
-
0034609675
-
-
(a) Van Emelen, K.; De Wit, T.; Hoornaert, G. J.; Compernolle, F. Org. Lett. 2000, 2, 3083-3086.
-
(2000)
Org. Lett
, vol.2
, pp. 3083-3086
-
-
Van Emelen, K.1
De Wit, T.2
Hoornaert, G.J.3
Compernolle, F.4
-
12
-
-
0035898750
-
-
(b) De Wit, T.; Van Emelen, K.; Maertens, F.; Hoornaert, G. J.; Compernolle, F. Tetrahedron Lett. 2001, 42, 4919-4922.
-
(2001)
Tetrahedron Lett
, vol.42
, pp. 4919-4922
-
-
De Wit, T.1
Van Emelen, K.2
Maertens, F.3
Hoornaert, G.J.4
Compernolle, F.5
-
13
-
-
0037140757
-
-
(c) Van Emelen, K.; De Wit, T.; Hoornaert, G. J.; Compernolle, F. Tetrahedron 2002, 58, 4225-4236.
-
(2002)
Tetrahedron
, vol.58
, pp. 4225-4236
-
-
Van Emelen, K.1
De Wit, T.2
Hoornaert, G.J.3
Compernolle, F.4
-
14
-
-
12344291765
-
-
(d) Maertens, F.; Van den Bogaert, A.; Compernolle, F.; Hoornaert, G. J. Eur. J. Org. Chem. 2004, 4648-4656.
-
(2004)
Eur. J. Org. Chem
, pp. 4648-4656
-
-
Maertens, F.1
Van den Bogaert, A.2
Compernolle, F.3
Hoornaert, G.J.4
-
15
-
-
84962368533
-
-
unpublished results
-
Justribó, V., unpublished results.
-
-
-
Justribó, V.1
-
16
-
-
0001191856
-
-
For the use triflic anhydride in intramolecular Ritter reactions, see
-
For the use triflic anhydride in intramolecular Ritter reactions, see: García Martínez, A.; Martínez Alvarez, R.; Teso Vilar, E.; García Fraile, A.; Hanack, M.; Subramanian, L. R. Tetrahedron Lett. 1989, 30, 581-582.
-
(1989)
Tetrahedron Lett
, vol.30
, pp. 581-582
-
-
García Martínez, A.1
Martínez Alvarez, R.2
Teso Vilar, E.3
García Fraile, A.4
Hanack, M.5
Subramanian, L.R.6
-
17
-
-
0034640532
-
-
For a review on triflic anhydride, see
-
For a review on triflic anhydride, see: Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077-3119.
-
(2000)
Tetrahedron
, vol.56
, pp. 3077-3119
-
-
Baraznenok, I.L.1
Nenajdenko, V.G.2
Balenkova, E.S.3
-
19
-
-
0032753886
-
-
Murakata, M.; Mizuno, Y.; Yamaguchi, H.; Hoshino, O. Chem. Pharm. Bull. 1999, 47, 1380-1383. In this publication, the (S)-enantiomer of enone 3 was described. This reference was unintentionally omitted in our previous publication (ref 8).
-
Murakata, M.; Mizuno, Y.; Yamaguchi, H.; Hoshino, O. Chem. Pharm. Bull. 1999, 47, 1380-1383. In this publication, the (S)-enantiomer of enone 3 was described. This reference was unintentionally omitted in our previous publication (ref 8).
-
-
-
-
22
-
-
0000153116
-
-
(c) Hill, R. K.; Conley, R. T.; Chortyk, O. T. J. Am. Chem. Soc. 1965, 87, 5646-5651.
-
(1965)
J. Am. Chem. Soc
, vol.87
, pp. 5646-5651
-
-
Hill, R.K.1
Conley, R.T.2
Chortyk, O.T.3
-
23
-
-
84962460078
-
-
To simplify the analysis presented in this paper, we have not included the results of the reactions of other δ-hydroxynitriles that have been synthesized in our laboratory ref 5, These include a variety of acyclic and monocyclic substrates with secondary and tertiary alcohol functionalities. None of these δ-hydroxynitriles gave rise to enones upon treatment with triflic anhydride. The results of these experiments will be published elsewhere in due course
-
To simplify the analysis presented in this paper, we have not included the results of the reactions of other δ-hydroxynitriles that have been synthesized in our laboratory (ref 5). These include a variety of acyclic and monocyclic substrates with secondary and tertiary alcohol functionalities. None of these δ-hydroxynitriles gave rise to enones upon treatment with triflic anhydride. The results of these experiments will be published elsewhere in due course.
-
-
-
-
24
-
-
1542609701
-
-
The reaction mixtures needed to be acidified with aqueous HCl solution during the workup because otherwise the isolation of products as described in ref 4a was difficult and the yields were low. For a reference, see: Anderson, A. G, Greef, H. F. J. Am. Chem. Soc. 1952, 74, 5203-5204
-
The reaction mixtures needed to be acidified with aqueous HCl solution during the workup because otherwise the isolation of products as described in ref 4a was difficult and the yields were low. For a reference, see: Anderson, A. G.; Greef, H. F. J. Am. Chem. Soc. 1952, 74, 5203-5204.
-
-
-
-
25
-
-
33645545261
-
-
This protocol was developed after much experimentation while working on the Michael addition of methyl 2-oxocyclopentanecarboxylate to acrylonitrile because use of typical bases led to the opening of the ring. For a reference, see: Adamcik, J. A, Miklasiewicz, E. J. J. Org. Chem. 1963, 28, 336-339
-
This protocol was developed after much experimentation while working on the Michael addition of methyl 2-oxocyclopentanecarboxylate to acrylonitrile because use of typical bases led to the opening of the ring. For a reference, see: Adamcik, J. A.; Miklasiewicz, E. J. J. Org. Chem. 1963, 28, 336-339.
-
-
-
-
27
-
-
0038231688
-
-
(b) Böttger, G.; Geisler, A.; Fröhlich, R.; Würthwein, E.-U. J. Org. Chem. 1997, 62, 6407-6411.
-
(1997)
J. Org. Chem
, vol.62
, pp. 6407-6411
-
-
Böttger, G.1
Geisler, A.2
Fröhlich, R.3
Würthwein, E.-U.4
-
28
-
-
0037031621
-
-
and references cited therein
-
Overman, L. E.; Wolfe, J. P. J. Org. Chem. 2002, 67, 6421-6429 and references cited therein.
-
(2002)
J. Org. Chem
, vol.67
, pp. 6421-6429
-
-
Overman, L.E.1
Wolfe, J.P.2
-
29
-
-
84962366315
-
-
Carbocations 28-30 could also be formed directly from intermediates 22-24.
-
Carbocations 28-30 could also be formed directly from intermediates 22-24.
-
-
-
-
30
-
-
0001174653
-
-
and references cited therein
-
Roger, R.; Neilson, D. G. Chem. Rev. 1961, 61, 179-211 and references cited therein.
-
(1961)
Chem. Rev
, vol.61
, pp. 179-211
-
-
Roger, R.1
Neilson, D.G.2
-
32
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.3
-
34
-
-
28744442745
-
-
(a) Martinez, A. G.; Vilar, E. T.; Barcina, J. O.; de la Moya Cerero, S. J. Org. Chem. 2005, 70, 10238-10246.
-
(2005)
J. Org. Chem
, vol.70
, pp. 10238-10246
-
-
Martinez, A.G.1
Vilar, E.T.2
Barcina, J.O.3
de la Moya Cerero, S.4
-
35
-
-
33646525410
-
-
and references cited therein
-
(b) Gutta, P.; Tantillo, D. J. J. Am. Chem. Soc. 2006, 128, 6172-6179 and references cited therein.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 6172-6179
-
-
Gutta, P.1
Tantillo, D.J.2
-
36
-
-
36148995600
-
-
(a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
-
(1985)
J. Chem. Phys
, vol.83
, pp. 735-746
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
37
-
-
0011083499
-
-
(b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
-
(1988)
Chem. Rev
, vol.88
, pp. 899-926
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
38
-
-
84946893847
-
-
(a) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129.
-
(1981)
Chem. Phys
, vol.55
, pp. 117-129
-
-
Miertus, S.1
Scrocco, E.2
Tomasi, J.3
-
40
-
-
84962445598
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb. M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K, N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li X, Knox, J. E, Hratchian, H. P, Cross, J. B, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels. A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T, Al-La
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb. M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.; N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels. A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision 6.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
-
-
-
-
41
-
-
84962366309
-
-
Hyperchem Professional Release 7.52; Hypercube, Inc, 2005
-
Hyperchem Professional Release 7.52; Hypercube, Inc., 2005.
-
-
-
-
43
-
-
84962445588
-
-
Location of protonated triflates 22, 23, and 24 was somewhat complicated because many conformers dissociated to the corresponding carbocations plus triflic acid during minimizations.
-
Location of protonated triflates 22, 23, and 24 was somewhat complicated because many conformers dissociated to the corresponding carbocations plus triflic acid during minimizations.
-
-
-
-
45
-
-
0000110004
-
-
(b) Eldin, S.; Pollack, R. M.; Whalen, D. L. J. Am. Chem. Soc. 1991, 113, 1344-1349.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 1344-1349
-
-
Eldin, S.1
Pollack, R.M.2
Whalen, D.L.3
-
46
-
-
0343542956
-
-
(c) Eldin, S.; Dale, L.; Pollack, R. M. J. Org. Chem. 1993, 58, 3490-3495.
-
(1993)
J. Org. Chem
, vol.58
, pp. 3490-3495
-
-
Eldin, S.1
Dale, L.2
Pollack, R.M.3
-
48
-
-
84962338596
-
-
All located transition structures had only one imaginary frequency corresponding to the formation of the expected bonds
-
All located transition structures had only one imaginary frequency corresponding to the formation of the expected bonds.
-
-
-
-
49
-
-
33845979150
-
-
The negative sign of the computed activation energies might be a consequence of the flatness of the PES and also of the method employed in the calculations because B3LYP is known to underestimate energy barriers. For some recent references, see: (a) Pemberton, R. P, McShane, C. M, Castro, C, Karney, W. L. J. Am. Chem. Soc. 2006, 128, 16692-16700
-
The negative sign of the computed activation energies might be a consequence of the flatness of the PES and also of the method employed in the calculations because B3LYP is known to underestimate energy barriers. For some recent references, see: (a) Pemberton, R. P.; McShane, C. M.; Castro, C.; Karney, W. L. J. Am. Chem. Soc. 2006, 128, 16692-16700.
-
-
-
-
51
-
-
0037195002
-
-
(c) Voegele, A. F.; Tautermann, C. S.; Loerting, T.; Liedl, K. R. J. Phys. Chem. A 2002, 106, 7850-7857.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 7850-7857
-
-
Voegele, A.F.1
Tautermann, C.S.2
Loerting, T.3
Liedl, K.R.4
-
53
-
-
0035924862
-
-
and references cited therein
-
(e) Gonzales, J. M.; Cox, R. S., III; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III. J. Phys. Chem. A 2001, 105, 11327-11346 and references cited therein.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 11327-11346
-
-
Gonzales, J.M.1
Cox III, R.S.2
Brown, S.T.3
Allen, W.D.4
Schaefer III, H.F.5
-
54
-
-
84962403109
-
-
-1, suggesting that these processes should be energetically feasible at room temperature.
-
-1, suggesting that these processes should be energetically feasible at room temperature.
-
-
-
-
55
-
-
0037120838
-
-
Activation of the cyano group by protonation has been shown to be the rate-limiting step in some reactions involving nucleophilic attack on nitriles. For example, see: Himo, F, Demko, Z. P, Noodleman, L, Sharpless, K. B. J. Am. Chem. Soc. 2002, 124, 12210-12216 and references cited therein
-
Activation of the cyano group by protonation has been shown to be the rate-limiting step in some reactions involving nucleophilic attack on nitriles. For example, see: Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2002, 124, 12210-12216 and references cited therein.
-
-
-
-
56
-
-
84962404748
-
-
The localization of the transition structures leading to the protonation of the alcohols and the formation of the protonated triflates would lead to a clearer picture of the competence observed between these processes. However, based on Hammond's Postulate, transition structures should be closer in energy to the products than to the reactants because we computed both activation steps to be endergonic ΔG > 0, Reaction energies were thus used to estimate the reactivity trend for each process
-
The localization of the transition structures leading to the protonation of the alcohols and the formation of the protonated triflates would lead to a clearer picture of the competence observed between these processes. However, based on Hammond's Postulate, transition structures should be closer in energy to the products than to the reactants because we computed both activation steps to be endergonic (ΔG > 0). Reaction energies were thus used to estimate the reactivity trend for each process.
-
-
-
-
57
-
-
4043066337
-
-
Cleavage of protonated alcohols to the carbocations and water was observed during some geometry optimizations. The same results have been obtained in a number of studies. For example, see: Fujio, M, Keeffe, J. R, More O'Ferrall. R. A, O'Donoghue, A. C. J. Am. Chem. Soc. 2004, 126, 9982-9992
-
Cleavage of protonated alcohols to the carbocations and water was observed during some geometry optimizations. The same results have been obtained in a number of studies. For example, see: Fujio, M.; Keeffe, J. R.; More O'Ferrall. R. A.; O'Donoghue, A. C. J. Am. Chem. Soc. 2004, 126, 9982-9992.
-
-
-
-
58
-
-
84962403095
-
-
It is well known that imidates rearrange readily to amides. This rearrangement has been extensively studied and is known as the Chapman or Lander rearrangement depending on the nature of the carbon that shifts from the oxygen to the nitrogen. The mechanism of this reaction also appears to depend on the nature of the substituent
-
It is well known that imidates rearrange readily to amides. This rearrangement has been extensively studied and is known as the Chapman or Lander rearrangement depending on the nature of the carbon that shifts from the oxygen to the nitrogen. The mechanism of this reaction also appears to depend on the nature of the substituent.
-
-
-
-
59
-
-
33947301041
-
-
L'abbe, G. Chem. Rev. 1969, 69, 345-363.
-
(1969)
Chem. Rev
, vol.69
, pp. 345-363
-
-
L'abbe, G.1
-
60
-
-
19544380747
-
-
Martín, A.; Perez-Martín, I.; Suárez, E. Org. Lett. 2005, 7, 2027-2030.
-
(2005)
Org. Lett
, vol.7
, pp. 2027-2030
-
-
Martín, A.1
Perez-Martín, I.2
Suárez, E.3
-
61
-
-
0035826331
-
-
For a related attack of an ambident nucleophile see
-
For a related attack of an ambident nucleophile see: Peng, Z-H.; Woerpel, K. A. Org. Lett. 2001, 3, 675-678.
-
(2001)
Org. Lett
, vol.3
, pp. 675-678
-
-
Peng, Z.-H.1
Woerpel, K.A.2
-
62
-
-
0010851829
-
-
-1 more stable in the gas phase. This is in agreement with the literature. For example, see: (a) Beak, P.; Lee, J.; Zeigler, J. M. J. Org. Chem. 1980, 43, 1536-1538.
-
-1 more stable in the gas phase. This is in agreement with the literature. For example, see: (a) Beak, P.; Lee, J.; Zeigler, J. M. J. Org. Chem. 1980, 43, 1536-1538.
-
-
-
-
64
-
-
0141451974
-
-
Lomberget, T.; Bentz, E.; Bouyssi, D.; Balme, G. Org. Lett. 2003, 5, 2055-2057.
-
(2003)
Org. Lett
, vol.5
, pp. 2055-2057
-
-
Lomberget, T.1
Bentz, E.2
Bouyssi, D.3
Balme, G.4
|