메뉴 건너뛰기




Volumn 11, Issue 1, 2016, Pages 4-12

An empirical study of features fusion techniques for protein-protein interaction prediction

Author keywords

Features fusion; Features selection; Protein protein interaction; Random forests

Indexed keywords

FEATURE SELECTION; FORECASTING;

EID: 84961970485     PISSN: 15748936     EISSN: 2212392X     Source Type: Journal    
DOI: 10.2174/1574893611666151119221435     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 33748684383 scopus 로고    scopus 로고
    • Identification of function-associated loop motifs and application to protein function prediction
    • Espadaler J, Querol E, Aviles FX, Oliva B. Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics 2006; 22(18): 2237-43.
    • (2006) Bioinformatics , vol.22 , Issue.18 , pp. 2237-2243
    • Espadaler, J.1    Querol, E.2    Aviles, F.X.3    Oliva, B.4
  • 2
    • 84885129153 scopus 로고    scopus 로고
    • Identification of hepatocellular carcinoma related genes with k-th shortest paths in a proteinprotein interaction network
    • Jiang M, Chen Y, Zhang Y, et al. Identification of hepatocellular carcinoma related genes with k-th shortest paths in a proteinprotein interaction network. Mol BioSyst 2013; 9(11): 2720-8.
    • (2013) Mol BioSyst , vol.9 , Issue.11 , pp. 2720-2728
    • Jiang, M.1    Chen, Y.2    Zhang, Y.3
  • 3
    • 33646358998 scopus 로고    scopus 로고
    • Prediction of yeast protein-protein interaction network: Insights from the Gene Ontology and annotations
    • Wu X, Zhu L, Guo J, Zhang D-Y, Lin K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res 2006; 34(7): 2137-50.
    • (2006) Nucleic Acids Res , vol.34 , Issue.7 , pp. 2137-2150
    • Wu, X.1    Zhu, L.2    Guo, J.3    Zhang, D.-Y.4    Lin, K.5
  • 6
    • 0842346438 scopus 로고    scopus 로고
    • Pawson T. Cell 2004; 116: 191-203.
    • (2004) Cell , vol.116 , pp. 191-203
    • Pawson, T.1
  • 7
    • 79952509639 scopus 로고    scopus 로고
    • Predicting protein phenotypes based on protein-protein interaction network
    • Hu L, Huang T, Liu X-J, Cai Y-D. Predicting protein phenotypes based on protein-protein interaction network. PloS one 2011; 6(3): e17668.
    • (2011) PloS one , vol.6 , Issue.3
    • Hu, L.1    Huang, T.2    Liu, X.-J.3    Cai, Y.-D.4
  • 8
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • Von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002; 417(6887): 399-403.
    • (2002) Nature , vol.417 , Issue.6887 , pp. 399-403
    • Von Mering, C.1    Krause, R.2    Snel, B.3
  • 9
    • 33744471931 scopus 로고    scopus 로고
    • Enhanced automated function prediction using distantly related sequences and contextual association by PFP
    • Hawkins T, Luban S, Kihara D. Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Science 2006; 15(6): 1550-6.
    • (2006) Protein Science , vol.15 , Issue.6 , pp. 1550-1556
    • Hawkins, T.1    Luban, S.2    Kihara, D.3
  • 10
    • 34248371273 scopus 로고    scopus 로고
    • Predicting protein-protein interactions based only on sequences information
    • Shen J, Zhang J, Luo X, et al. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A 2007; 104(11): 4337-41.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.11 , pp. 4337-4341
    • Shen, J.1    Zhang, J.2    Luo, X.3
  • 11
    • 44349159560 scopus 로고    scopus 로고
    • Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences
    • Guo Y, Yu L, Wen Z, Li M. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res 2008; 36(9): 3025-30.
    • (2008) Nucleic Acids Res , vol.36 , Issue.9 , pp. 3025-3030
    • Guo, Y.1    Yu, L.2    Wen, Z.3    Li, M.4
  • 12
    • 60349114820 scopus 로고    scopus 로고
    • Prediction of proteinprotein interactions based on PseAA composition and hybrid feature selection
    • Liu L, Cai Y, Lu W, Feng K, Peng C, Niu B. Prediction of proteinprotein interactions based on PseAA composition and hybrid feature selection. Biochem Biophys Res Commun 2009; 380(2): 318-22.
    • (2009) Biochem Biophys Res Commun , vol.380 , Issue.2 , pp. 318-322
    • Liu, L.1    Cai, Y.2    Lu, W.3    Feng, K.4    Peng, C.5    Niu, B.6
  • 13
    • 80052059113 scopus 로고    scopus 로고
    • Sequence-based proteinprotein interaction prediction via support vector machine
    • Wang Y, Wang J, Yang Z, Deng N. Sequence-based proteinprotein interaction prediction via support vector machine. Journal of Systems Science and Complexity. 2010; 23(5): 1012-23.
    • (2010) Journal of Systems Science and Complexity , vol.23 , Issue.5 , pp. 1012-1023
    • Wang, Y.1    Wang, J.2    Yang, Z.3    Deng, N.4
  • 14
    • 79251548286 scopus 로고    scopus 로고
    • Analysis and prediction of translation rate based on sequence and functional features of the mRNA
    • Huang T, Wan S, Xu Z, et al. Analysis and prediction of translation rate based on sequence and functional features of the mRNA. PLos one 2011; 6(1): e16036.
    • (2011) PLos one , vol.6 , Issue.1
    • Huang, T.1    Wan, S.2    Xu, Z.3
  • 15
    • 84862641013 scopus 로고    scopus 로고
    • Prediction of lysine ubiquitination with mRMR feature selection and analysis
    • Cai Y, Huang T, Hu L, Shi X, Xie L, Li Y. Prediction of lysine ubiquitination with mRMR feature selection and analysis. Amino acids 2012; 42(4): 1387-95.
    • (2012) Amino acids , vol.42 , Issue.4 , pp. 1387-1395
    • Cai, Y.1    Huang, T.2    Hu, L.3    Shi, X.4    Xie, L.5    Li, Y.6
  • 16
    • 84901288109 scopus 로고    scopus 로고
    • Using distances between Top-n-gram and residue pairs for protein remote homology detection
    • Liu B, Xu J, Zou Q, Xu R, Wang X, Chen Q. Using distances between Top-n-gram and residue pairs for protein remote homology detection. BMC bioinformatics 2014; 15(Suppl 2): S3.
    • (2014) BMC bioinformatics , vol.15
    • Liu, B.1    Xu, J.2    Zou, Q.3    Xu, R.4    Wang, X.5    Chen, Q.6
  • 17
    • 58149345703 scopus 로고    scopus 로고
    • A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis
    • Liu B, Wang X, Lin L, Dong Q, Wang X. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC bioinformatics 2008; 9(1): 510.
    • (2008) BMC bioinformatics , vol.9 , Issue.1 , pp. 510
    • Liu, B.1    Wang, X.2    Lin, L.3    Dong, Q.4    Wang, X.5
  • 18
    • 84874240374 scopus 로고    scopus 로고
    • Hierarchical classification of protein folds using a novel ensemble classifier
    • Lin C, Zou Y, Qin J, et al. Hierarchical classification of protein folds using a novel ensemble classifier. PloS one 2013; 8(2): e56499.
    • (2013) PloS one , vol.8 , Issue.2
    • Lin, C.1    Zou, Y.2    Qin, J.3
  • 19
    • 84881519843 scopus 로고    scopus 로고
    • BinMemPredict: A web server and software for predicting membrane protein types
    • Zou Q, Li X, Jiang Y, Zhao Y, Wang G. BinMemPredict: a web server and software for predicting membrane protein types. Current Proteomics. 2013; 10(1): 2-9.
    • (2013) Current Proteomics , vol.10 , Issue.1 , pp. 2-9
    • Zou, Q.1    Li, X.2    Jiang, Y.3    Zhao, Y.4    Wang, G.5
  • 20
    • 20144387067 scopus 로고    scopus 로고
    • The MIPS mammalian protein-protein interaction database
    • Pagel P, Kovac S, Oesterheld M, et al. The MIPS mammalian protein-protein interaction database. Bioinformatics 2005; 21(6): 832-4.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 832-834
    • Pagel, P.1    Kovac, S.2    Oesterheld, M.3
  • 21
    • 58149186477 scopus 로고    scopus 로고
    • PID: The pathway interaction database
    • Schaefer CF, Anthony K, Krupa S, et al. PID: the pathway interaction database. Nucleic Acids Res 2009; 37(suppl 1): D674-D9.
    • (2009) Nucleic Acids Res , vol.37 , pp. D6D9-D674
    • Schaefer, C.F.1    Anthony, K.2    Krupa, S.3
  • 23
    • 78651324347 scopus 로고    scopus 로고
    • The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored
    • Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39(suppl 1): D561-D8.
    • (2011) Nucleic Acids Res , vol.39 , pp. D5D8-D561
    • Szklarczyk, D.1    Franceschini, A.2    Kuhn, M.3
  • 24
    • 58149193222 scopus 로고    scopus 로고
    • Human protein reference database-2009 update
    • Prasad TK, Goel R, Kandasamy K, et al. Human protein reference database-2009 update. Nucleic Acids Res 2009; 37(suppl 1): D767-D72.
    • (2009) Nucleic Acids Res , vol.37 , pp. DD72-D767
    • Prasad, T.K.1    Goel, R.2    Kandasamy, K.3
  • 25
    • 78651343711 scopus 로고    scopus 로고
    • DroID 2011: A comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila
    • Murali T, Pacifico S, Yu J, Guest S, Roberts GG, Finley RL. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 2011; 39(suppl 1): D736-D43.
    • (2011) Nucleic Acids Res , vol.39 , pp. D736-D743
    • Murali, T.1    Pacifico, S.2    Yu, J.3    Guest, S.4    Roberts, G.G.5    Finley, R.L.6
  • 26
    • 0036088133 scopus 로고    scopus 로고
    • DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions
    • Xenarios I, Salwinski L, Duan XJ, Higney P, Kim S-M, Eisenberg D. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002; 30(1): 303-5.
    • (2002) Nucleic Acids Res , vol.30 , Issue.1 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3    Higney, P.4    Kim, S.-M.5    Eisenberg, D.6
  • 27
    • 0034747024 scopus 로고    scopus 로고
    • YPD, PombePD and WormPD: Model organism volumes of the BioKnowledge Library, an integrated resource for protein information
    • Costanzo MC, Crawford ME, Hirschman JE, et al. YPD, PombePD and WormPD: model organism volumes of the BioKnowledge Library, an integrated resource for protein information. Nucleic Acids Res 2001; 29(1): 75-9.
    • (2001) Nucleic Acids Res , vol.29 , Issue.1 , pp. 75-79
    • Costanzo, M.C.1    Crawford, M.E.2    Hirschman, J.E.3
  • 28
    • 34248371273 scopus 로고    scopus 로고
    • Predicting protein-protein interactions based only on sequences information
    • Shen J, Zhang J, Luo X, et al. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A 2007; 104(11): 4337-41.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.11 , pp. 4337-4341
    • Shen, J.1    Zhang, J.2    Luo, X.3
  • 29
    • 84891773554 scopus 로고    scopus 로고
    • Negatome 2.0: A database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis
    • gkt1079
    • Blohm P, Frishman G, Smialowski P, et al. Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res 2013; gkt1079.
    • (2013) Nucleic Acids Res
    • Blohm, P.1    Frishman, G.2    Smialowski, P.3
  • 30
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations using fuzzy k-NN method
    • Huang Y, Li Y. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics 2004; 20(1): 21-8.
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 21-28
    • Huang, Y.1    Li, Y.2
  • 31
    • 1942505330 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions
    • Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004; 13(5): 1402-6.
    • (2004) Protein Sci , vol.13 , Issue.5 , pp. 1402-1406
    • Yu, C.S.1    Lin, C.J.2    Hwang, J.K.3
  • 32
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • editors
    • Leslie CS, Eskin E, Noble WS, editors. The spectrum kernel: A string kernel for SVM protein classification. Pac Symp Biocomput 2002.
    • (2002) Pac Symp Biocomput
    • Leslie, C.S.1    Eskin, E.2    Noble, W.S.3
  • 33
    • 13444262436 scopus 로고    scopus 로고
    • Predicting protein-protein interactions using signature products
    • Martin S, Roe D, Faulon J-L. Predicting protein-protein interactions using signature products. Bioinformatics 2005; 21(2): 218-26.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 218-226
    • Martin, S.1    Roe, D.2    Faulon, J.-L.3
  • 34
    • 77951469170 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions from primary sequences
    • Dong Q, Zhou S, Liu X. Prediction of protein-protein interactions from primary sequences. Int J Data Min Bioinform 2010; 4(2): 211-27.
    • (2010) Int J Data Min Bioinform , vol.4 , Issue.2 , pp. 211-227
    • Dong, Q.1    Zhou, S.2    Liu, X.3
  • 35
    • 84895861426 scopus 로고    scopus 로고
    • Effective Dysphonia Detection Using Feature Dimension Reduction and Kernel Density Estimation for Patients with Parkinson's Disease
    • Yang S, Zheng F, Luo X, et al. Effective Dysphonia Detection Using Feature Dimension Reduction and Kernel Density Estimation for Patients with Parkinson's Disease. PloS one 2014; 9(2): e88825.
    • (2014) PloS one , vol.9 , Issue.2
    • Yang, S.1    Zheng, F.2    Luo, X.3
  • 36
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 2005; 3(02): 185-205.
    • (2005) J Bioinform Comput Biol , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-38.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45(1): 5-32.
    • (2001) Machine learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 39
    • 60649105510 scopus 로고    scopus 로고
    • Predicting RNA secondary structure based on the class information and Hopfield network
    • Zou Q, Zhao T, Liu Y, Guo M. Predicting RNA secondary structure based on the class information and Hopfield network. Comput Biol Med 2009; 39(3): 206-14.
    • (2009) Comput Biol Med , vol.39 , Issue.3 , pp. 206-214
    • Zou, Q.1    Zhao, T.2    Liu, Y.3    Guo, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.