메뉴 건너뛰기




Volumn 103, Issue , 2016, Pages 735-745

Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: A comparative study

Author keywords

Genetic algorithm; Renewable generation; Risk assessment; Scenario generation; Uncertainty; Unit commitment

Indexed keywords

DECISION MAKING; GENETIC ALGORITHMS; RENEWABLE ENERGY RESOURCES; RISK ASSESSMENT; RISK PERCEPTION; SOLAR ENERGY; STOCHASTIC SYSTEMS;

EID: 84961927121     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2016.03.007     Document Type: Article
Times cited : (64)

References (48)
  • 1
    • 84926177599 scopus 로고    scopus 로고
    • A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources
    • Osório G., Lujano-Rojas J., Matias J., Catalão J. A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources. Energy 2015, 82:949-959.
    • (2015) Energy , vol.82 , pp. 949-959
    • Osório, G.1    Lujano-Rojas, J.2    Matias, J.3    Catalão, J.4
  • 2
    • 84905750068 scopus 로고    scopus 로고
    • Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
    • Quan H., Srinivasan D., Khosravi A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting. Energy 2014, 73:916-925.
    • (2014) Energy , vol.73 , pp. 916-925
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 3
    • 84899641739 scopus 로고    scopus 로고
    • An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study
    • Petković D., Shamshirband S., Anuar N.B., Saboohi H., Wahab A.W.A., Protić M., et al. An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study. Energy Convers Manag 2014, 84:133-139.
    • (2014) Energy Convers Manag , vol.84 , pp. 133-139
    • Petković, D.1    Shamshirband, S.2    Anuar, N.B.3    Saboohi, H.4    Wahab, A.W.A.5    Protić, M.6
  • 4
  • 5
    • 84939816629 scopus 로고    scopus 로고
    • Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals
    • Quan H., Srinivasan D., Khosravi A. Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals. IEEE Trans Neural Netw Learn Syst 2015, 26(9):2123-2135.
    • (2015) IEEE Trans Neural Netw Learn Syst , vol.26 , Issue.9 , pp. 2123-2135
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 6
    • 79955525885 scopus 로고    scopus 로고
    • Setting the operating reserve using probabilistic wind power forecasts
    • Matos M.A., Bessa R.J. Setting the operating reserve using probabilistic wind power forecasts. IEEE Trans Power Syst 2011, 26(2):594-603.
    • (2011) IEEE Trans Power Syst , vol.26 , Issue.2 , pp. 594-603
    • Matos, M.A.1    Bessa, R.J.2
  • 7
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • Zhang Y., Wang J., Wang X. Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 2014, 32:255-270.
    • (2014) Renew Sustain Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 8
    • 21144464610 scopus 로고
    • Calculating interval forecasts
    • Chatfield C. Calculating interval forecasts. J Bus Econ Stat 1993, 11(2):121-135.
    • (1993) J Bus Econ Stat , vol.11 , Issue.2 , pp. 121-135
    • Chatfield, C.1
  • 9
    • 36349000747 scopus 로고    scopus 로고
    • A fuzzy-optimization approach for generation scheduling with wind and solar energy systems
    • Liang R.-H., Liao J.-H. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans Power Syst 2007, 22(4):1665-1674.
    • (2007) IEEE Trans Power Syst , vol.22 , Issue.4 , pp. 1665-1674
    • Liang, R.-H.1    Liao, J.-H.2
  • 10
    • 70350557636 scopus 로고    scopus 로고
    • Fuzzy MILP unit commitment incorporating wind generators
    • Venkatesh B., Yu P., Gooi H., Choling D. Fuzzy MILP unit commitment incorporating wind generators. IEEE Trans Power Syst 2008, 23(4):1738-1746.
    • (2008) IEEE Trans Power Syst , vol.23 , Issue.4 , pp. 1738-1746
    • Venkatesh, B.1    Yu, P.2    Gooi, H.3    Choling, D.4
  • 11
    • 84891491511 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission
    • Petković D., Ćojbašić Ž., Nikolić V., Shamshirband S., Kiah M.L.M., Anuar N.B., et al. Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 2014, 64:868-874.
    • (2014) Energy , vol.64 , pp. 868-874
    • Petković, D.1    Ćojbašić, Ž.2    Nikolić, V.3    Shamshirband, S.4    Kiah, M.L.M.5    Anuar, N.B.6
  • 12
    • 84860260612 scopus 로고    scopus 로고
    • Robust unit commitment with wind power and pumped storage hydro
    • Jiang R., Wang J., Guan Y. Robust unit commitment with wind power and pumped storage hydro. IEEE Trans Power Syst 2012, 27(2):800-810.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.2 , pp. 800-810
    • Jiang, R.1    Wang, J.2    Guan, Y.3
  • 13
    • 84872853161 scopus 로고    scopus 로고
    • Adaptive robust optimization for the security constrained unit commitment problem
    • Bertsimas D., Litvinov E., Sun X., Zhao J., Zheng T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans Power Syst 2013, 28(1):52-63.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.1 , pp. 52-63
    • Bertsimas, D.1    Litvinov, E.2    Sun, X.3    Zhao, J.4    Zheng, T.5
  • 14
    • 84880919916 scopus 로고    scopus 로고
    • Two-stage minimax regret robust unit commitment
    • Jiang R., Wang J., Zhang M., Guan Y. Two-stage minimax regret robust unit commitment. IEEE Trans Power Syst 2013, 28(3):2271-2282.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.3 , pp. 2271-2282
    • Jiang, R.1    Wang, J.2    Zhang, M.3    Guan, Y.4
  • 15
    • 0002395681 scopus 로고
    • Chance-constrained programming
    • Charnes A., Cooper W.W. Chance-constrained programming. Manag Sci 1959, 6(1):73-79.
    • (1959) Manag Sci , vol.6 , Issue.1 , pp. 73-79
    • Charnes, A.1    Cooper, W.W.2
  • 16
    • 4043072671 scopus 로고    scopus 로고
    • A solution to the stochastic unit commitment problem using chance constrained programming
    • Ozturk U.A., Mazumdar M., Norman B.A. A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans Power Syst 2004, 19(3):1589-1598.
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.3 , pp. 1589-1598
    • Ozturk, U.A.1    Mazumdar, M.2    Norman, B.A.3
  • 17
    • 84856290355 scopus 로고    scopus 로고
    • A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output
    • Wang Q., Guan Y., Wang J. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans Power Syst 2012, 27(1):206-215.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.1 , pp. 206-215
    • Wang, Q.1    Guan, Y.2    Wang, J.3
  • 18
    • 84867966709 scopus 로고    scopus 로고
    • Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization
    • Zhao J., Wen F., Dong Z.Y., Xue Y., Wong K.P. Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization. IEEE Trans Ind Inf 2012, 8(4):889-899.
    • (2012) IEEE Trans Ind Inf , vol.8 , Issue.4 , pp. 889-899
    • Zhao, J.1    Wen, F.2    Dong, Z.Y.3    Xue, Y.4    Wong, K.P.5
  • 19
    • 84860259834 scopus 로고    scopus 로고
    • Comparison of scenario-based and interval optimization approaches to stochastic SCUC
    • Wu L., Shahidehpour M., Li Z. Comparison of scenario-based and interval optimization approaches to stochastic SCUC. IEEE Trans Power Syst 2012, 27(2):913-921.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.2 , pp. 913-921
    • Wu, L.1    Shahidehpour, M.2    Li, Z.3
  • 20
    • 49249095955 scopus 로고    scopus 로고
    • Security-constrained unit commitment with volatile wind power generation
    • Wang J., Shahidehpour M., Li Z. Security-constrained unit commitment with volatile wind power generation. IEEE Trans Power Syst 2008, 23(3):1319-1327.
    • (2008) IEEE Trans Power Syst , vol.23 , Issue.3 , pp. 1319-1327
    • Wang, J.1    Shahidehpour, M.2    Li, Z.3
  • 21
    • 60149087287 scopus 로고    scopus 로고
    • Estimating the spinning reserve requirements in systems with significant wind power generation penetration
    • Ortega-Vazquez M.A., Kirschen D.S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans Power Syst 2009, 24(1):114-124.
    • (2009) IEEE Trans Power Syst , vol.24 , Issue.1 , pp. 114-124
    • Ortega-Vazquez, M.A.1    Kirschen, D.S.2
  • 22
    • 84864814976 scopus 로고    scopus 로고
    • An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation
    • Niknam T., Azizipanah-Abarghooee R., Narimani M.R. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Appl Energy 2012, 99:455-470.
    • (2012) Appl Energy , vol.99 , pp. 455-470
    • Niknam, T.1    Azizipanah-Abarghooee, R.2    Narimani, M.R.3
  • 23
    • 84884672147 scopus 로고    scopus 로고
    • Scenario generation of wind power based on statistical uncertainty and variability
    • Ma X.-Y., Sun Y.-Z., Fang H.-L. Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans Sustain Energy 2013, 4(4):894-904.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.4 , pp. 894-904
    • Ma, X.-Y.1    Sun, Y.-Z.2    Fang, H.-L.3
  • 24
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • Pinson P., Madsen H., Nielsen H.A., Papaefthymiou G., Klöckl B. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 2009, 12(1):51-62.
    • (2009) Wind Energy , vol.12 , Issue.1 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3    Papaefthymiou, G.4    Klöckl, B.5
  • 25
    • 80053183705 scopus 로고    scopus 로고
    • Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures
    • Makarov Y., Etingov P., Ma J., Huang Z., Subbarao K. Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. IEEE Trans Sustain Energy 2011, 2(4):433-442.
    • (2011) IEEE Trans Sustain Energy , vol.2 , Issue.4 , pp. 433-442
    • Makarov, Y.1    Etingov, P.2    Ma, J.3    Huang, Z.4    Subbarao, K.5
  • 26
    • 43849084987 scopus 로고    scopus 로고
    • Effects of load forecast uncertainty on bulk electric system reliability evaluation
    • Billinton R., Huang D. Effects of load forecast uncertainty on bulk electric system reliability evaluation. IEEE Trans Power Syst 2008, 23(2):418-425.
    • (2008) IEEE Trans Power Syst , vol.23 , Issue.2 , pp. 418-425
    • Billinton, R.1    Huang, D.2
  • 27
    • 1442264390 scopus 로고    scopus 로고
    • Unit commitment by enhanced adaptive Lagrangian relaxation
    • Ongsakul W., Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 2004, 19(1):620-628.
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.1 , pp. 620-628
    • Ongsakul, W.1    Petcharaks, N.2
  • 28
    • 0030082567 scopus 로고    scopus 로고
    • A genetic algorithm solution to the unit commitment problem
    • Kazarlis S., Bakirtzis A., Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 1996, 11(1):83-92.
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.1 , pp. 83-92
    • Kazarlis, S.1    Bakirtzis, A.2    Petridis, V.3
  • 29
    • 0026821995 scopus 로고
    • Short-term load forecasting using an artificial neural network
    • Lee K.Y., Cha Y.T., Park J.H. Short-term load forecasting using an artificial neural network. IEEE Trans Power Syst 1992, 7(1):124-132.
    • (1992) IEEE Trans Power Syst , vol.7 , Issue.1 , pp. 124-132
    • Lee, K.Y.1    Cha, Y.T.2    Park, J.H.3
  • 30
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Quan H., Srinivasan D., Khosravi A. Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans Neural Netw Learn Syst 2014, 25(2):303-315.
    • (2014) IEEE Trans Neural Netw Learn Syst , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 31
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimation method for construction of neural network-based prediction intervals
    • Khosravi A., Nahavandi S., Creighton D., Atiya A.F. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans Neural Netw 2011, 22(3):337-346.
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 33
    • 84962250140 scopus 로고    scopus 로고
    • Wind power/AIL data 2014, URL:. http://www.aeso.ca/gridoperations/20544.html.
    • (2014)
  • 34
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson P., Kariniotakis G. Conditional prediction intervals of wind power generation. IEEE Trans Power Syst 2010, 25(4):1845-1856.
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 36
    • 84962244701 scopus 로고    scopus 로고
    • UO solar radiation monitoring laboratory 2014, URL:. http://solardat.uoregon.edu/index.html.
    • (2014)
  • 38
    • 0030215880 scopus 로고    scopus 로고
    • A stochastic model for the unit commitment problem
    • Takriti S., Birge J.R., Long E. A stochastic model for the unit commitment problem. IEEE Trans Power Syst 1996, 11(3):1497-1508.
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.3 , pp. 1497-1508
    • Takriti, S.1    Birge, J.R.2    Long, E.3
  • 39
    • 67650257171 scopus 로고    scopus 로고
    • Application of enhanced discrete differential evolution approach to unit commitment problem
    • Yuan X., Su A., Nie H., Yuan Y., Wang L. Application of enhanced discrete differential evolution approach to unit commitment problem. Energy Convers Manag 2009, 50(9):2449-2456.
    • (2009) Energy Convers Manag , vol.50 , Issue.9 , pp. 2449-2456
    • Yuan, X.1    Su, A.2    Nie, H.3    Yuan, Y.4    Wang, L.5
  • 40
    • 0034186815 scopus 로고    scopus 로고
    • Unit commitment by lagrangian relaxation and genetic algorithms
    • Cheng C.-P., Liu C.-W., Liu C.-C. Unit commitment by lagrangian relaxation and genetic algorithms. IEEE Trans Power Syst 2000, 15(2):707-714.
    • (2000) IEEE Trans Power Syst , vol.15 , Issue.2 , pp. 707-714
    • Cheng, C.-P.1    Liu, C.-W.2    Liu, C.-C.3
  • 41
    • 84861721237 scopus 로고    scopus 로고
    • A binary-real-coded differential evolution for unit commitment problem
    • Datta D., Dutta S. A binary-real-coded differential evolution for unit commitment problem. Int J Electr Power Energy Syst 2012, 42(1):517-524.
    • (2012) Int J Electr Power Energy Syst , vol.42 , Issue.1 , pp. 517-524
    • Datta, D.1    Dutta, S.2
  • 44
    • 84881614129 scopus 로고    scopus 로고
    • Stochastic unit commitment problem considering risk constraints and its improved GA-based solution method
    • Xiong G., Liu X., Hashiyama T. Stochastic unit commitment problem considering risk constraints and its improved GA-based solution method. IEEJ Trans Electr Electron Eng 2013, 8(5):463-469.
    • (2013) IEEJ Trans Electr Electron Eng , vol.8 , Issue.5 , pp. 463-469
    • Xiong, G.1    Liu, X.2    Hashiyama, T.3
  • 45
    • 20444464059 scopus 로고    scopus 로고
    • A priority list-based evolutionary algorithm to solve large scale unit commitment problem
    • Srinivasan D., Chazelas J. A priority list-based evolutionary algorithm to solve large scale unit commitment problem. Proc. Int. Conf. Power System Technology 2004, vol. 2:1746-1751.
    • (2004) Proc. Int. Conf. Power System Technology , vol.2 , pp. 1746-1751
    • Srinivasan, D.1    Chazelas, J.2
  • 46
    • 84888437077 scopus 로고    scopus 로고
    • Particle swarm optimization for construction of neural network-based prediction intervals
    • Quan H., Srinivasan D., Khosravi A. Particle swarm optimization for construction of neural network-based prediction intervals. Neurocomputing 2014, 127:172-180.
    • (2014) Neurocomputing , vol.127 , pp. 172-180
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 47
    • 77956427732 scopus 로고    scopus 로고
    • Particle swarm optimization for unit commitment problem
    • Logenthiran T., Srinivasan D. Particle swarm optimization for unit commitment problem. Proc. IEEE PMAPS 2010, 642-647.
    • (2010) Proc. IEEE PMAPS , pp. 642-647
    • Logenthiran, T.1    Srinivasan, D.2
  • 48
    • 84860262199 scopus 로고    scopus 로고
    • Two-level hierarchical approach to unit commitment using expert system and elite PSO
    • Chen P.-H. Two-level hierarchical approach to unit commitment using expert system and elite PSO. IEEE Trans Power Syst 2012, 27(2):780-789.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.2 , pp. 780-789
    • Chen, P.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.