메뉴 건너뛰기




Volumn 59, Issue , 2016, Pages 63-71

Towards effective codebookless model for image classification

Author keywords

Bag of features; Codebookless model; Image classification; Riemannian manifold

Indexed keywords

GAUSSIAN DISTRIBUTION; SUPPORT VECTOR MACHINES; VECTOR SPACES;

EID: 84961770574     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.03.004     Document Type: Article
Times cited : (32)

References (59)
  • 1
    • 85020634104 scopus 로고    scopus 로고
    • Sparse kernel orthonormalized PLS for feature extraction in large data sets, in: Neural Information Processing Systems, 2006
    • [1] J. Arenas-Garcia, K.B. Petersen, L.K. Hansen, Sparse kernel orthonormalized PLS for feature extraction in large data sets, in: Neural Information Processing Systems, 2006.
    • Arenas-Garcia, J.1    Petersen, K.B.2    Hansen, L.K.3
  • 2
    • 33645357937 scopus 로고    scopus 로고
    • Fast and simple calculus on tensors in the Log-Euclidean framework, in: Medical Image Computing and Computer Assisted Intervention, 2005
    • [2] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Fast and simple calculus on tensors in the Log-Euclidean framework, in: Medical Image Computing and Computer Assisted Intervention, 2005.
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 3
    • 84856655526 scopus 로고    scopus 로고
    • Modeling image similarity by gaussian mixture models and the signature quadratic form distance, in: International Conference on Computer Vision, 2011
    • [3] C. Beecks, A.M. Zimmer, S. Kirchhoff, T. Seidl, Modeling image similarity by gaussian mixture models and the signature quadratic form distance, in: International Conference on Computer Vision, 2011.
    • Beecks, C.1    Zimmer, A.M.2    Kirchhoff, S.3    Seidl, T.4
  • 4
    • 84887371778 scopus 로고    scopus 로고
    • Multipath sparse coding using hierarchical matching pursuit, in: Computer Vision and Pattern Recognition, 2013
    • [4] L. Bo, X. Ren, D. Fox, Multipath sparse coding using hierarchical matching pursuit, in: Computer Vision and Pattern Recognition, 2013.
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 5
    • 85161987584 scopus 로고    scopus 로고
    • Efficient match kernel between sets of features for visual recognition, in: Neural Information Processing Systems, 2009
    • [5] L. Bo, C. Sminchisescu, Efficient match kernel between sets of features for visual recognition, in: Neural Information Processing Systems, 2009.
    • Bo, L.1    Sminchisescu, C.2
  • 6
    • 85020678577 scopus 로고    scopus 로고
    • In defense of nearest-neighbor based image classification, in: Computer Vision and Pattern Recognition, 2011
    • [6] O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image classification, in: Computer Vision and Pattern Recognition, 2011.
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 12
    • 84887396870 scopus 로고    scopus 로고
    • Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification, in: Computer Vision and Pattern Recognition, 2013
    • [12] D. Chen, X. Cao, F. Wen, J. Sun, Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification, in: Computer Vision and Pattern Recognition, 2013.
    • Chen, D.1    Cao, X.2    Wen, F.3    Sun, J.4
  • 13
    • 84928818805 scopus 로고    scopus 로고
    • Describing textures in the wild, in: Computer Vision and Pattern Recognition, 2014
    • [13] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, Describing textures in the wild, in: Computer Vision and Pattern Recognition, 2014.
    • Cimpoi, M.1    Maji, S.2    Kokkinos, I.3    Mohamed, S.4    Vedaldi, A.5
  • 15
    • 84904622584 scopus 로고    scopus 로고
    • Optimal shrinkage of eigenvalues in the spiked covariance model, 2014
    • arXiv:1311.0851
    • [15] D.L. Donoho, M. Gavish, I.M. Johnstone, Optimal shrinkage of eigenvalues in the spiked covariance model, arXiv:1311.0851 2014.
    • Donoho, D.L.1    Gavish, M.2    Johnstone, I.M.3
  • 16
    • 77952417601 scopus 로고    scopus 로고
    • Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging
    • [16] L. Dryden, A. Koloydenko, D. Zhou, Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging, in: Annals of Applied Statistics, 2009.
    • (2009) Annals of Applied Statistics
    • Dryden, L.1    Koloydenko, A.2    Zhou, D.3
  • 21
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: discriminative classification with sets of image features, in: International Conference on Computer Vision, 2005
    • [21] K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification with sets of image features, in: International Conference on Computer Vision, 2005.
    • Grauman, K.1    Darrell, T.2
  • 22
    • 38349061181 scopus 로고    scopus 로고
    • The Caltech-256, Technical Report, California Institute of Technology
    • [22] G. Griffin, A. Holub, P. Perona, The Caltech-256, Technical Report, California Institute of Technology, 2007.
    • (2007)
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 23
    • 77956003992 scopus 로고    scopus 로고
    • Material perception: what can you see in a brief glance?
    • [23] haran, L., Rosenholtz, R., Adelson, E.H., Material perception: what can you see in a brief glance?. J. Vis., 9, 2009, 784.
    • (2009) J. Vis. , vol.9 , pp. 784
    • haran, L.1    Rosenholtz, R.2    Adelson, E.H.3
  • 24
    • 84938938571 scopus 로고    scopus 로고
    • From manifold to manifold: geometry-aware dimensionality reduction for spd matrices, in: European Conference on Computer Vision, 2014
    • [24] M.T. Harandi, M. Salzmann, R. Hartley, From manifold to manifold: geometry-aware dimensionality reduction for spd matrices, in: European Conference on Computer Vision, 2014.
    • Harandi, M.T.1    Salzmann, M.2    Hartley, R.3
  • 25
    • 84887400913 scopus 로고    scopus 로고
    • Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: Computer Vision and Pattern Recognition, 2013
    • [25] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: Computer Vision and Pattern Recognition, 2013.
    • Jayasumana, S.1    Hartley, R.2    Salzmann, M.3    Li, H.4    Harandi, M.5
  • 26
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation, in: Computer Vision and Pattern Recognition, 2010
    • [26] H. Jégou, M. Douze, C. Schmid, P. Pérez, Aggregating local descriptors into a compact image representation, in: Computer Vision and Pattern Recognition, 2010.
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 27
    • 77953179079 scopus 로고    scopus 로고
    • Linear dimensionality reduction for multi-label classification, in: International Joint Conference on Artificial Intelligence, 2009
    • [27] S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: International Joint Conference on Artificial Intelligence, 2009.
    • Ji, S.1    Ye, J.2
  • 28
    • 84898794697 scopus 로고    scopus 로고
    • Saliency detection via absorbing Markov chain, in: International Conference on Computer Vision, 2013
    • [28] B. Jiang, L. Zhang, H. Lu, C. Yang, M.H. Yang, Saliency detection via absorbing Markov chain, in: International Conference on Computer Vision, 2013.
    • Jiang, B.1    Zhang, L.2    Lu, H.3    Yang, C.4    Yang, M.H.5
  • 29
    • 84911397147 scopus 로고    scopus 로고
    • Dirichlet-based histogram feature transform for image classification
    • [29] T. Kobayashi, Dirichlet-based histogram feature transform for image classification, in: Computer Vision and Pattern Recognition, 2014.
    • (2014) Computer Vision and Pattern Recognition
    • Kobayashi, T.1
  • 30
    • 84941735523 scopus 로고    scopus 로고
    • Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection, Technical Report
    • [30] P. Koniusz, F. Yan, P.H. Gosselin, K. Mikolajczyk, Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection, Technical Report, 2013.
    • (2013)
    • Koniusz, P.1    Yan, F.2    Gosselin, P.H.3    Mikolajczyk, K.4
  • 31
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in: Computer Vision and Pattern Recognition, 2006
    • [31] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in: Computer Vision and Pattern Recognition, 2006.
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 32
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • [32] L.J. Li, F.F. Li, What, where and who? Classifying events by scene and object recognition, in: International Conference on Computer Vision, 2007.
    • (2007) International Conference on Computer Vision
    • Li, L.J.1    Li, F.F.2
  • 33
    • 84986242459 scopus 로고    scopus 로고
    • Local log-euclidean covariance matrix (l2ecm) for image representation and its applications
    • [33] P. Li, Q. Wang, Local log-euclidean covariance matrix (l2ecm) for image representation and its applications, in: European Conference on Computer Vision, 2012.
    • (2012) European Conference on Computer Vision
    • Li, P.1    Wang, Q.2
  • 34
    • 84898831609 scopus 로고    scopus 로고
    • A novel earth mover׳s distance methodology for image matching with gaussian mixture models, in: International Conference on Computer Vision, 2013
    • [34] P. Li, Q. Wang, L. Zhang, A novel earth mover׳s distance methodology for image matching with gaussian mixture models, in: International Conference on Computer Vision, 2013.
    • Li, P.1    Wang, Q.2    Zhang, L.3
  • 35
    • 80052726060 scopus 로고    scopus 로고
    • Representing and recognizing objects with massive local image patches
    • [35] Lin, L., Luo, P., Chen, X., Zeng, K., Representing and recognizing objects with massive local image patches. Pattern Recognit. 45 (2012), 231–240.
    • (2012) Pattern Recognit. , vol.45 , pp. 231-240
    • Lin, L.1    Luo, P.2    Chen, X.3    Zeng, K.4
  • 36
    • 0347117629 scopus 로고    scopus 로고
    • Multivariate normal distributions parametrized as a Riemannian symmetric space
    • [36] Lovric, M., Min-Oo, M., Ruh, E.A., Multivariate normal distributions parametrized as a Riemannian symmetric space. J. Multivar. Anal. 74 (2000), 36–48.
    • (2000) J. Multivar. Anal. , vol.74 , pp. 36-48
    • Lovric, M.1    Min-Oo, M.2    Ruh, E.A.3
  • 37
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • [37] Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60 (2004), 91–110.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 38
    • 77955994782 scopus 로고    scopus 로고
    • Global gaussian approach for scene categorization using information geometry, in: Computer Vision and Pattern Recognition, 2010
    • [38] H. Nakayama, T. Harada, Y. Kuniyoshi, Global gaussian approach for scene categorization using information geometry, in: Computer Vision and Pattern Recognition, 2010.
    • Nakayama, H.1    Harada, T.2    Kuniyoshi, Y.3
  • 39
    • 84957435511 scopus 로고    scopus 로고
    • Deep boosting: joint feature selection and analysis dictionary learning in hierarchy
    • [39] Peng, Z., Li, Y., Cai, Z., Lin, L., Deep boosting: joint feature selection and analysis dictionary learning in hierarchy. Neurocomputing 178 (2016), 36–45.
    • (2016) Neurocomputing , vol.178 , pp. 36-45
    • Peng, Z.1    Li, Y.2    Cai, Z.3    Lin, L.4
  • 41
    • 32044457458 scopus 로고    scopus 로고
    • A study of Gaussian mixture models of color and texture features for image classification and segmentation
    • [41] Permuter, H., Francos, J., Jermyn, I., A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognit. 39 (2006), 695–706.
    • (2006) Pattern Recognit. , vol.39 , pp. 695-706
    • Permuter, H.1    Francos, J.2    Jermyn, I.3
  • 42
    • 0003517464 scopus 로고    scopus 로고
    • Digital Image Processing
    • 4th Edition John Wiley & Sons, Inc. New York, NY, USA
    • [42] Pratt, W.K., Digital Image Processing. 4th Edition, 2007, John Wiley & Sons, Inc., New York, NY, USA.
    • (2007)
    • Pratt, W.K.1
  • 43
    • 0034313871 scopus 로고    scopus 로고
    • The earth mover׳s distance as a metric for image retrieval
    • [43] Rubner, Y., Tomasi, C., Guibas, L.J., The earth mover׳s distance as a metric for image retrieval. Int. J. Comput. Vis. 40 (2000), 99–121.
    • (2000) Int. J. Comput. Vis. , vol.40 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 44
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: theory and practice
    • [44] Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J., Image classification with the Fisher vector: theory and practice. Int. J. Comput. Vis. 105 (2013), 222–245.
    • (2013) Int. J. Comput. Vis. , vol.105 , pp. 222-245
    • Sanchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 48
    • 0009377604 scopus 로고
    • Lectures on the theory of estimation of many parameters
    • [48] Stein, C., Lectures on the theory of estimation of many parameters. J. Math. Sci. 34 (1986), 1373–1403.
    • (1986) J. Math. Sci. , vol.34 , pp. 1373-1403
    • Stein, C.1
  • 49
    • 85119024383 scopus 로고    scopus 로고
    • Deep fisher kernels – end to end learning of the Fisher kernel GMM parameters, in: Computer Vision and Pattern Recognition, 2014
    • [49] V. Sydorov, M. Sakurada, C.H. Lampert, Deep fisher kernels – end to end learning of the Fisher kernel GMM parameters, in: Computer Vision and Pattern Recognition, 2014.
    • Sydorov, V.1    Sakurada, M.2    Lampert, C.H.3
  • 51
    • 70349362313 scopus 로고    scopus 로고
    • VLFeat: an open and portable library of computer vision algorithms
    • [51] A. Vedaldi, B. Fulkerson, VLFeat: an open and portable library of computer vision algorithms, 〈 http://www.vlfeat.org/〉, 2008.
    • (2008)
    • Vedaldi, A.1    Fulkerson, B.2
  • 52
  • 55
    • 84931575397 scopus 로고    scopus 로고
    • Visual feature coding for image classification integrating dictionary structure
    • [55] Yang, Y.B., Zhu, Q.H., Mao, X.J., Pan, L.Y., Visual feature coding for image classification integrating dictionary structure. Pattern Recognit. 48 (2015), 3067–3075.
    • (2015) Pattern Recognit. , vol.48 , pp. 3067-3075
    • Yang, Y.B.1    Zhu, Q.H.2    Mao, X.J.3    Pan, L.Y.4
  • 56
    • 84866665892 scopus 로고    scopus 로고
    • A codebook-free and annotation-free approach for fine-grained image categorization
    • [56] B. Yao, G. Bradski, L. Fei-Fei, A codebook-free and annotation-free approach for fine-grained image categorization, in: Computer Vision and Pattern Recognition, 2012.
    • (2012) Computer Vision and Pattern Recognition
    • Yao, B.1    Bradski, G.2    Fei-Fei, L.3
  • 57
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition, in: Computer Vision and Pattern Recognition, 2012
    • [57] N. Zhang, R. Farrell, T. Darrell, Pose pooling kernels for sub-category recognition, in: Computer Vision and Pattern Recognition, 2012.
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 58
    • 84896068752 scopus 로고    scopus 로고
    • Towards codebook-free: scalable cascaded hashing for mobile image search
    • [58] Zhou, W., Yang, M., Li, H., Wang, X., Lin, Y., Tian, Q., Towards codebook-free: scalable cascaded hashing for mobile image search. IEEE Trans. Multimed. 16 (2014), 601–611.
    • (2014) IEEE Trans. Multimed. , vol.16 , pp. 601-611
    • Zhou, W.1    Yang, M.2    Li, H.3    Wang, X.4    Lin, Y.5    Tian, Q.6
  • 59
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors, in: European Conference on Computer Vision, 2010
    • [59] X. Zhou, K. Yu, T. Zhang, T.S. Huang, Image classification using super-vector coding of local image descriptors, in: European Conference on Computer Vision, 2010.
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.