메뉴 건너뛰기




Volumn 72, Issue 13-15, 2009, Pages 3098-3122

A fuzzy neural network with fuzzy impact grades

Author keywords

Fuzzy neural network; Fuzzy rule identification; Mutual subsethood

Indexed keywords

BACKPROPAGATION ALGORITHMS; CLASSIFICATION (OF INFORMATION); FUZZY LOGIC; FUZZY NEURAL NETWORKS; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; KNOWLEDGE REPRESENTATION; LINEAR TRANSFORMATIONS; LINGUISTICS; MATHEMATICAL TRANSFORMATIONS;

EID: 79952754794     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.03.009     Document Type: Article
Times cited : (24)

References (67)
  • 1
    • 0025198791 scopus 로고
    • Fuzzy sets in pattern recognition: Methodology and methods
    • W. Pedrycz, Fuzzy sets in pattern recognition: methodology and methods, Pattern Recognition 23 (1) (1990) 121-146.
    • (1990) Pattern Recognition , vol.23 , Issue.1 , pp. 121
    • Pedrycz, W.1
  • 2
    • 0004262910 scopus 로고    scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • B. Kosko, Fuzzy Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1997.
    • (1997) Fuzzy Engineering
    • Kosko, B.1
  • 4
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 13 (2005) 428-435.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 5
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: Fuzzy logic controller
    • parts I and II,
    • C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller, parts I and II, IEEE Trans. Syst., Man Cybern. 20 (1990) 404-435.
    • (1990) IEEE Trans. Syst., Man Cybern. , vol.20 , pp. 404-435
    • Lee, C.C.1
  • 6
    • 0026366218 scopus 로고
    • Neural-network based fuzzy logic control and decision system
    • C.T. Lin, C.S.G. Lee, Neural-network based fuzzy logic control and decision system, IEEE Trans. Comput. 40 (1991) 1320-1336.
    • (1991) IEEE Trans. Comput. , vol.40 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 7
    • 0033876393 scopus 로고    scopus 로고
    • A neural-fuzzy system for congestion control in ATM networks
    • S.J. Lee, C.L. Hou, A neural-fuzzy system for congestion control in ATM networks, IEEE Trans. Syst. Man Cybern. 30 (2000) 2-9.
    • (2000) IEEE Trans. Syst. Man Cybern. , vol.30 , pp. 2-9
    • Lee, S.J.1    Hou, C.L.2
  • 8
    • 0031999146 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • C.F. Juang, C.T. Lin, An online self-constructing neural fuzzy inference network and its applications, IEEE Trans. Fuzzy Syst. 6 (1998) 12-31.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 12-31
    • Juang, C.F.1    Lin, C.T.2
  • 9
    • 33645688688 scopus 로고    scopus 로고
    • Pattern discovery of fuzzy time series for financial prediction
    • L. Lee, A. Liu, W. Chen, Pattern discovery of fuzzy time series for financial prediction, IEEE Trans. Knowl. Data Eng. 21 (2006) 1770-1777.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.21 , pp. 1770-1777
    • Lee, L.1    Liu, A.2    Chen, W.3
  • 10
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N.K. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10 (2002) 144-154.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 11
    • 30344473621 scopus 로고    scopus 로고
    • NFI: A neuron-fuzzy inference method for transductive reasoning
    • Q. Song, N.K. Kasabov, NFI: a neuron-fuzzy inference method for transductive reasoning, IEEE Trans. Fuzzy Syst. 13 (2005) 799-808.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , pp. 799-808
    • Song, Q.1    Kasabov, N.K.2
  • 12
    • 0030576819 scopus 로고    scopus 로고
    • Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems
    • N.K. Kasabov, Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems, Fuzzy Sets Syst. 82 (1996) 135-149.
    • (1996) Fuzzy Sets Syst. , vol.82 , pp. 135-149
    • Kasabov, N.K.1
  • 13
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin, G.A. Cunningham, A new approach to fuzzy-neural system modeling, IEEE Trans. Fuzzy Syst. 3 (1995) 190-198.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 14
    • 0033280325 scopus 로고    scopus 로고
    • POPFNN-AARS: A pseudo outer-product based fuzzy neural network
    • C. Quek, R.W. Zhou, POPFNN-AARS: a pseudo outer-product based fuzzy neural network, IEEE Trans. Syst. Man Cybern. B 29 (1999) 859-870.
    • (1999) IEEE Trans. Syst. Man Cybern. B , vol.29 , pp. 859-870
    • Quek, C.1    Zhou, R.W.2
  • 15
    • 0344395607 scopus 로고    scopus 로고
    • POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier
    • K.K. Ang, C. Quek, POPFNN-CRI(S): pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier, IEEE Trans. Syst. Man Cybern. B 33 (2003) 838-849.
    • (2003) IEEE Trans. Syst. Man Cybern. B , vol.33 , pp. 838-849
    • Ang, K.K.1    Quek, C.2
  • 16
    • 0742272547 scopus 로고    scopus 로고
    • Falcon: Neural fuzzy control and decision system using FKP and PFKP clustering algorithms
    • W.L. Tung, C. Quek, Falcon: neural fuzzy control and decision system using FKP and PFKP clustering algorithms, IEEE Trans. Syst. Man Cybern. B 34 (2004) 686-695.
    • (2004) IEEE Trans. Syst. Man Cybern. B , vol.34 , pp. 686-695
    • Tung, W.L.1    Quek, C.2
  • 17
    • 44649136064 scopus 로고    scopus 로고
    • Chaotic time series prediction using a neuron-fuzzy system with time-delay coordinates
    • J. Zhang, H.S.H. Chung, W.L. Lo, Chaotic time series prediction using a neuron-fuzzy system with time-delay coordinates, IEEE Trans. Knowl. Data Eng. 20 (2008) 956-964.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , pp. 956-964
    • Zhang, J.1    Chung, H.S.H.2    Lo, W.L.3
  • 18
    • 34547101961 scopus 로고    scopus 로고
    • Self-organizing adaptive fuzzy neural control for a class of nonlinear system
    • C.F. Hsu, Self-organizing adaptive fuzzy neural control for a class of nonlinear system, IEEE Trans. Neural Networks 18 (2007) 1232-1241.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 1232-1241
    • Hsu, C.F.1
  • 19
    • 23044495263 scopus 로고    scopus 로고
    • Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems
    • Y.G. Leu, W.Y. Wang, T.T. Lee, Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems, IEEE Trans. Neural Networks 16 (2005) 853-861.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 853-861
    • Leu, Y.G.1    Wang, W.Y.2    Lee, T.T.3
  • 20
    • 0030576819 scopus 로고    scopus 로고
    • Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems
    • N.K. Kasabov, Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems, Fuzzy Sets Syst. 82 (1996) 135-149.
    • (1996) Fuzzy Sets Syst. , vol.82 , pp. 135-149
    • Kasabov, N.K.1
  • 23
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 9 (2001) 506-515.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 24
    • 0036737109 scopus 로고    scopus 로고
    • GenSoFNN: A genetic self-organizing fuzzy neural network
    • W.L. Tung, C. Quek, GenSoFNN: a genetic self-organizing fuzzy neural network, IEEE Trans. Neural Networks 13 (2002) 1075-1086.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1075-1086
    • Tung, W.L.1    Quek, C.2
  • 25
    • 0034266756 scopus 로고    scopus 로고
    • Genetic fuzzy learning
    • M. Russo, Genetic fuzzy learning, IEEE Trans. Evol. Comput. 4 (2000) 259-273.
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , pp. 259-273
    • Russo, M.1
  • 26
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference system and their application to nonlinear dynamic systems
    • J. Kim, N.K. Kasabov, HyFIS: adaptive neuro-fuzzy inference system and their application to nonlinear dynamic systems, Neural Networks 12 (1999) 1301-1309.
    • (1999) Neural Networks , vol.12 , pp. 1301-1309
    • Kim, J.1    Kasabov, N.K.2
  • 27
    • 0029297401 scopus 로고
    • Neural nets for fuzzy systems
    • J.J. Buckley, Y. Hayashi, Neural nets for fuzzy systems, Fuzzy Sets Syst. 71 (1995) 265-276.
    • (1995) Fuzzy Sets Syst. , vol.71 , pp. 265-276
    • Buckley, J.J.1    Hayashi, Y.2
  • 28
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • S. Mitra, Y. Hayashi, Neuro-fuzzy rule generation: survey in soft computing framework, IEEE Trans. Neural Networks 11 (3) (2000) 748-768.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 748
    • Mitra, S.1    Hayashi, Y.2
  • 29
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • H. Jacobsson, Rule extraction from recurrent neural networks: a taxonomy and review, Neural Comput. 17 (2005) 1223-1263.
    • (2005) Neural Comput. , vol.17 , pp. 1223-1263
    • Jacobsson, H.1
  • 30
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • A.B. Tickle, R. Andrews, M. Golea, J. Diederich, The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks, IEEE Trans. Neural Networks 9 (1998) 1057-1068.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 31
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE. Trans. Syst. Man Cybern. 15 (1985) 116-132.
    • (1985) IEEE. Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 32
    • 0032138822 scopus 로고    scopus 로고
    • On the stability of linear Takagi-Sugeno fuzzy models
    • J. Joh, Y.H. Chen, R. Langari, On the stability of linear Takagi-Sugeno fuzzy models, IEEE Trans. Fuzzy Syst. 6 (1998) 402-410.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 402-410
    • Joh, J.1    Chen, Y.H.2    Langari, R.3
  • 33
    • 0005097411 scopus 로고    scopus 로고
    • Comment on-stability issues on Takagi-Sugeno fuzzy model-parametric approach
    • T.A. Johansen, O. Slupphaug, Comment on-stability issues on Takagi-Sugeno fuzzy model-parametric approach, IEEE Trans. Fuzzy Syst. 8 (2000) 345-346.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 345-346
    • Johansen, T.A.1    Slupphaug, O.2
  • 34
    • 0035502073 scopus 로고    scopus 로고
    • Mamdani-type fuzzy controllers are universal fuzzy controllers
    • S.G. Cao, N.W. Rees, G. Feng, Mamdani-type fuzzy controllers are universal fuzzy controllers, Fuzzy Sets Syst. 123 (2001) 359-367.
    • (2001) Fuzzy Sets Syst. , vol.123 , pp. 359-367
    • Cao, S.G.1    Rees, N.W.2    Feng, G.3
  • 35
    • 69549104878 scopus 로고    scopus 로고
    • Design of an anti-overshoot Mamdani-type fuzzy-adaptive controller for yaw angle control of a model helicopter
    • M. Morteza, M. Ali, Design of an anti-overshoot Mamdani-type fuzzy-adaptive controller for yaw angle control of a model helicopter, Int. J. Intell. Syst. Technol. Appl. 4 (2008) 386-398.
    • (2008) Int. J. Intell. Syst. Technol. Appl. , vol.4 , pp. 386-398
    • Morteza, M.1    Ali, M.2
  • 36
    • 0012645389 scopus 로고    scopus 로고
    • A defuzzification based new algorithm for the design of Mamdani-type fuzzy controllers
    • J.J. Saade, A defuzzification based new algorithm for the design of Mamdani-type fuzzy controllers, Mathware Soft Comput. 7 (2000) 159-173.
    • (2000) Mathware Soft Comput. , vol.7 , pp. 159-173
    • Saade, J.J.1
  • 37
    • 34848834882 scopus 로고    scopus 로고
    • Adaptive Mamdani fuzzy model for condition-based maintenance
    • K. Ranganath, S.H. Huang, Adaptive Mamdani fuzzy model for condition-based maintenance, Fuzzy Sets Syst. 158 (2007) 2715-2733.
    • (2007) Fuzzy Sets Syst. , vol.158 , pp. 2715-2733
    • Ranganath, K.1    Huang, S.H.2
  • 38
    • 0035245169 scopus 로고    scopus 로고
    • Comment on computing extreme values in-stability issues on Takagi-Sugeno fuzzy model-parametric approach
    • R. Dvorakova, P. Husek, Comment on computing extreme values in-stability issues on Takagi-Sugeno fuzzy model-parametric approach, IEEE Trans. Fuzzy Syst. 9 (2001) 221-223.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 221-223
    • Dvorakova, R.1    Husek, P.2
  • 39
    • 0037645790 scopus 로고    scopus 로고
    • Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control
    • M. Mahfouf, M.F. Abbod, D.A. Linkens, Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control, IEEE Trans. Syst. Man Cybern. B 33 (2003) 465-475.
    • (2003) IEEE Trans. Syst. Man Cybern. B , vol.33 , pp. 465-475
    • Mahfouf, M.1    Abbod, M.F.2    Linkens, D.A.3
  • 40
    • 85030583524 scopus 로고    scopus 로고
    • Artificial neural networks are zero-order TSK fuzzy systems
    • to be published
    • C.J. Mantas, J.M. Puche, Artificial neural networks are zero-order TSK fuzzy systems, IEEE Trans. Fuzzy Syst., to be published.
    • IEEE Trans. Fuzzy Syst.
    • Mantas, C.J.1    Puche, J.M.2
  • 42
    • 0001557773 scopus 로고
    • Fuzzy regression analysis using neural networks
    • H. Ishibuchi, H. Tanaka, Fuzzy regression analysis using neural networks, Fuzzy Sets Syst. 50 (1992) 257-265.
    • (1992) Fuzzy Sets Syst. , vol.50 , pp. 257-265
    • Ishibuchi, H.1    Tanaka, H.2
  • 44
    • 0037119854 scopus 로고    scopus 로고
    • Fuzzified neural network based on fuzzy neural operation
    • Z.Q. Lin, K. Vojislav, I. Akira, Fuzzified neural network based on fuzzy neural operation, Fuzzy Sets Syst. 130 (2002) 291-304.
    • (2002) Fuzzy Sets Syst. , vol.130 , pp. 291-304
    • Lin, Z.Q.1    Vojislav, K.2    Akira, I.3
  • 45
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood product fuzzy neural inference system (SuPFuNIS)
    • S. Paul, S. Kumar, Subsethood product fuzzy neural inference system (SuPFuNIS), IEEE Trans. Neural Networks 13 (2002) 578-599.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 46
    • 13844266752 scopus 로고    scopus 로고
    • Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS)
    • C.S. Velayutham, S. Humar, Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS), IEEE Trans. Neural Networks 16 (2005) 160-174.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 160-174
    • Velayutham, C.S.1    Humar, S.2
  • 47
    • 0031627851 scopus 로고    scopus 로고
    • How the learning of rule weights affects the interpretability of fuzzy systems
    • Anchorage, AK, May 4-9
    • D. Nauck, R. Kruse, How the learning of rule weights affects the interpretability of fuzzy systems, in: Proceedings of the Seventh IEEE International Conference Fuzzy Systems, Anchorage, AK, May 4-9, 1998, pp. 1235-1240.
    • (1998) Proceedings of the Seventh IEEE International Conference Fuzzy Systems , pp. 1235-1240
    • Nauck, D.1    Kruse, R.2
  • 48
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen. 7 (pt. II) (1936) 179-188.
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 51
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • C.J. Lin, C.T. Lin, An ART-based fuzzy adaptive learning control network, IEEE Trans. Fuzzy Syst. 5 (1997) 477-496.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 477-496
    • Lin, C.J.1    Lin, C.T.2
  • 54
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H.A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis, Artif. Intell. Med. 25 (2002) 265-281.
    • (2002) Artif. Intell. Med. , vol.25 , pp. 265-281
    • Abbass, H.A.1
  • 55
    • 0032675169 scopus 로고    scopus 로고
    • A principal components approach to combining regression estimates
    • C.J. Merz, M.J. Pazzani, A principal components approach to combining regression estimates, Mach. Learn. 36 (1997) 9-34.
    • (1997) Mach. Learn. , vol.36 , pp. 9-34
    • Merz, C.J.1    Pazzani, M.J.2
  • 56
    • 85030587143 scopus 로고    scopus 로고
    • A Self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning
    • to be published
    • C. Juang, Y. Tsao, A Self-evolving interval type-2 fuzzy neural network with on-line structure and parameter learning, IEEE Trans. Fuzzy Syst., to be published.
    • IEEE Trans. Fuzzy Syst.
    • Juang, C.1    Tsao, Y.2
  • 57
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern. 23 (1993) 665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 58
    • 0001623515 scopus 로고    scopus 로고
    • Neuro-fuzzy systems for function approximation
    • D. Nauk, R. Kruse, Neuro-fuzzy systems for function approximation, Fuzzy Sets Syst. 101 (2) (1999) 261-271.
    • (1999) Fuzzy Sets Syst. , vol.101 , Issue.2 , pp. 261
    • Nauk, D.1    Kruse, R.2
  • 59
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks-a novel approach to function approximation
    • S. Wu, M.J. Er, Dynamic fuzzy neural networks-a novel approach to function approximation, IEEE Trans. Syst. Man Cybern. B 30 (2000) 358-364.
    • (2000) IEEE Trans. Syst. Man Cybern. B , vol.30 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 60
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: Feedforward and recurrent fuzzy neural approaches
    • Y. Gao, M.J. Er, NARMAX time series model prediction: feedforward and recurrent fuzzy neural approaches, Fuzzy Sets Syst. 150 (2005) 331-350.
    • (2005) Fuzzy Sets Syst. , vol.150 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 61
    • 1542273540 scopus 로고    scopus 로고
    • Computing derivatives in interval type-2 fuzzy logic system
    • J.M. Mendel, Computing derivatives in interval type-2 fuzzy logic system, IEEE Trans. Fuzzy Syst. 12 (2004) 84-98.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , pp. 84-98
    • Mendel, J.M.1
  • 62
    • 85030580365 scopus 로고    scopus 로고
    • Incremental learning of dynamic fuzzy neural networks for accurate system modeling
    • to be published
    • X.S. Deng, X.Z. Wang, Incremental learning of dynamic fuzzy neural networks for accurate system modeling, Fuzzy Sets Syst., to be published.
    • Fuzzy Sets Syst.
    • Deng, X.S.1    Wang, X.Z.2
  • 63
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function network, IEEE Trans. Neural Networks 2 (1991) 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 64
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K.B. Cho, B.H. Wang, Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction, Fuzzy Sets Syst. (1996) 325-339.
    • (1996) Fuzzy Sets Syst. , pp. 325
    • Cho, K.B.1    Wang, B.H.2
  • 65
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • G. Leng, T.M. McGinnity, G. Prasad, An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network, Fuzzy Sets Syst. (2005) 211-243.
    • (2005) Fuzzy Sets Syst. , pp. 211
    • Leng, G.1    Mcginnity, T.M.2    Prasad, G.3
  • 66
    • 0037331913 scopus 로고    scopus 로고
    • Data-driven linguistic modeling using relational fuzzy rules
    • A.E. Gaweda, J.M. Zurada, Data-driven linguistic modeling using relational fuzzy rules, IEEE Trans. Fuzzy Syst. 11 (2003) 121-134.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , pp. 121-134
    • Gaweda, A.E.1    Zurada, J.M.2
  • 67
    • 0000185305 scopus 로고
    • Successive identification of a fuzzy model and its application to prediction of a complex system
    • M. Sugeno, K. Tanaka, Successive identification of a fuzzy model and its application to prediction of a complex system, Fuzzy Sets Syst. 42 (1991) 315-334.
    • (1991) Fuzzy Sets Syst. , vol.42 , pp. 315-334
    • Sugeno, M.1    Tanaka, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.