메뉴 건너뛰기




Volumn 91, Issue 5, 2015, Pages

Dynamic and structural stability of cubic vanadium nitride

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84961290137     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.91.054101     Document Type: Article
Times cited : (83)

References (86)
  • 4
    • 0032328191 scopus 로고    scopus 로고
    • A. I. Gusev, Phys. Status Solidi B 209, 267 (1998). 10.1002/(SICI)1521-3951(199810)209:2%3C267::AID-PSSB267%3E3.0.CO;2-D
    • (1998) Phys. Status Solidi B , vol.209 , pp. 267
    • Gusev, A.I.1
  • 6
  • 20
    • 34547564932 scopus 로고
    • PHRVAO 0031-899X
    • R. P. Feynman, Phys. Rev. 56, 340 (1939). PHRVAO 0031-899X 10.1103/PhysRev.56.340
    • (1939) Phys. Rev. , vol.56 , pp. 340
    • Feynman, R.P.1
  • 22
    • 0042113153 scopus 로고
    • PHRVAO 0031-899X
    • W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). PHRVAO 0031-899X 10.1103/PhysRev.140.A1133
    • (1965) Phys. Rev. , vol.140 , pp. A1133
    • Kohn, W.1    Sham, L.J.2
  • 23
    • 25744460922 scopus 로고
    • PRBMDO 1098-0121
    • P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
    • (1994) Phys. Rev. B , vol.50 , pp. 17953
    • Blöchl, P.E.1
  • 24
    • 35949007146 scopus 로고
    • PRBMDO 1098-0121
    • G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993). PRBMDO 1098-0121 10.1103/PhysRevB.48.13115
    • (1993) Phys. Rev. B , vol.48 , pp. 13115
    • Kresse, G.1    Hafner, J.2
  • 25
    • 0011236321 scopus 로고    scopus 로고
    • PRBMDO 1098-0121
    • G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). PRBMDO 1098-0121 10.1103/PhysRevB.59.1758
    • (1999) Phys. Rev. B , vol.59 , pp. 1758
    • Kresse, G.1    Joubert, D.2
  • 26
    • 2442537377 scopus 로고    scopus 로고
    • PRBMDO 1098-0121
    • G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). PRBMDO 1098-0121 10.1103/PhysRevB.54.11169
    • (1996) Phys. Rev. B , vol.54 , pp. 11169
    • Kresse, G.1    Furthmüller, J.2
  • 27
    • 33644936253 scopus 로고    scopus 로고
    • PRBMDO 1098-0121
    • R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.72.085108
    • (2005) Phys. Rev. B , vol.72 , pp. 085108
    • Armiento, R.1    Mattsson, A.E.2
  • 28
    • 84943502952 scopus 로고
    • MOPHAM 0026-8976
    • S. Nosé, Mol. Phys. 52, 255 (1984). MOPHAM 0026-8976 10.1080/00268978400101201
    • (1984) Mol. Phys. , vol.52 , pp. 255
    • Nosé, S.1
  • 29
    • 12344271673 scopus 로고
    • JUPSAU 0031-9015
    • R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). JUPSAU 0031-9015 10.1143/JPSJ.12.570
    • (1957) J. Phys. Soc. Jpn. , vol.12 , pp. 570
    • Kubo, R.1
  • 30
    • 0001237864 scopus 로고
    • PRBMDO 1098-0121
    • W. H. Butler, Phys. Rev. B 31, 3260 (1985). PRBMDO 1098-0121 10.1103/PhysRevB.31.3260
    • (1985) Phys. Rev. B , vol.31 , pp. 3260
    • Butler, W.H.1
  • 35
    • 0000390202 scopus 로고
    • PRBMDO 1098-0121
    • J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 (1980). PRBMDO 1098-0121 10.1103/PhysRevB.21.3222
    • (1980) Phys. Rev. B , vol.21 , pp. 3222
    • Faulkner, J.S.1    Stocks, G.M.2
  • 36
    • 33749512386 scopus 로고
    • J. Korringa, Physica 13, 392 (1947). 10.1016/0031-8914(47)90013-X
    • (1947) Physica , vol.13 , pp. 392
    • Korringa, J.1
  • 37
    • 36149025490 scopus 로고
    • PHRVAO 0031-899X
    • W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954). PHRVAO 0031-899X 10.1103/PhysRev.94.1111
    • (1954) Phys. Rev. , vol.94 , pp. 1111
    • Kohn, W.1    Rostoker, N.2
  • 44
    • 84982383889 scopus 로고
    • H. Hahn, Z. Anorg. Chem. 258, 58 (1949). 10.1002/zaac.19492580107
    • (1949) Z. Anorg. Chem. , vol.258 , pp. 58
    • Hahn, H.1
  • 45
    • 49949142916 scopus 로고
    • AMETAR 0001-6160
    • L. Toth, C. Wang, and G. Yen, Acta Metall. 14, 1403 (1966). AMETAR 0001-6160 10.1016/0001-6160(66)90160-X
    • (1966) Acta Metall. , vol.14 , pp. 1403
    • Toth, L.1    Wang, C.2    Yen, G.3
  • 50
    • 77249093023 scopus 로고    scopus 로고
    • PHTRDP 0141-1594
    • R. Xu and T.-C. Chiang, Phase Transitions 83, 99 (2010). PHTRDP 0141-1594 10.1080/01411590903526177
    • (2010) Phase Transitions , vol.83 , pp. 99
    • Xu, R.1    Chiang, T.-C.2
  • 58
  • 69
    • 0042129216 scopus 로고
    • PRBMDO 1098-0121
    • F. Nava, O. Bisi, and K. N. Tu, Phys. Rev. B 34, 6143 (1986). PRBMDO 1098-0121 10.1103/PhysRevB.34.6143
    • (1986) Phys. Rev. B , vol.34 , pp. 6143
    • Nava, F.1    Bisi, O.2    Tu, K.N.3
  • 71
    • 0001621625 scopus 로고
    • PRBMDO 1098-0121
    • M. Gurvitch, Phys. Rev. B 24, 7404 (1981). PRBMDO 1098-0121 10.1103/PhysRevB.24.7404
    • (1981) Phys. Rev. B , vol.24 , pp. 7404
    • Gurvitch, M.1
  • 77
    • 0003574139 scopus 로고
    • (North-Holland Pub. Co.: Sole distributors for the USA and Canada; Elsevier North-Holland, Amsterdam; New York, NY)
    • G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland Pub. Co.: Sole distributors for the USA and Canada; Elsevier North-Holland, Amsterdam; New York, NY, 1981).
    • (1981) The Electron-Phonon Interaction in Metals
    • Grimvall, G.1
  • 79
  • 83
    • 84961320831 scopus 로고    scopus 로고
    • Unstable phases do not appear in the equilibrium phase diagram, since their vibrational entropy is undefined. As a soft-mode phase transition is approached, the phonon energies of the dynamically stable phase approach zero, increasing the vibrational entropy of the system. Since the energy of the unstable phonon branch varies parabolically near the point of instability, the density of states (Equation presented) suppresses the logarithmic divergence in Eq. (4) yielding an entropy which is finite and slowly varying as a function of temperature [54,86]. Thus, the excess entropy associated with the vibrational instability can be modeled using a smooth interpolation from the region where the corresponding phase is dynamically (and thermodynamically) stable [87]
    • Unstable phases do not appear in the equilibrium phase diagram, since their vibrational entropy is undefined. As a soft-mode phase transition is approached, the phonon energies of the dynamically stable phase approach zero, increasing the vibrational entropy of the system. Since the energy of the unstable phonon branch varies parabolically near the point of instability, the density of states (Equation presented) suppresses the logarithmic divergence in Eq. (4) yielding an entropy which is finite and slowly varying as a function of temperature [54,86]. Thus, the excess entropy associated with the vibrational instability can be modeled using a smooth interpolation from the region where the corresponding phase is dynamically (and thermodynamically) stable [87].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.