메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages 3827-3833

Robust subspace clustering via thresholding ridge regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; ERRORS; REGRESSION ANALYSIS;

EID: 84961202304     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (113)

References (26)
  • 4
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropie graphs for dimension and entropy estimation in manifold learning
    • Costa, J., and Hero, A. 2004. Geodesic entropie graphs for dimension and entropy estimation in manifold learning. IEEE Transactions on Signal Processing 52(8):2210-2221.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.1    Hero, A.2
  • 5
    • 0032154138 scopus 로고    scopus 로고
    • A multibody factorization method for independently moving objects
    • Costeira, J. P., and Kanade, T. 1998. A multibody factorization method for independently moving objects. International Journal of Computer Vision 29(3):159-179.
    • (1998) International Journal of Computer Vision , vol.29 , Issue.3 , pp. 159-179
    • Costeira, J.P.1    Kanade, T.2
  • 11
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., and Kennard, R. W. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 12
    • 85162350693 scopus 로고    scopus 로고
    • Linearized alternating direction method with adaptive penalty for low-rank representation
    • Lin, Z.; Liu, R.; and Su, Z. 2011. Linearized alternating direction method with adaptive penalty for low-rank representation. In Proc. of Neural Information Processing Systems, volume 2, 6.
    • (2011) Proc. of Neural Information Processing Systems , vol.2 , pp. 6
    • Lin, Z.1    Liu, R.2    Su, Z.3
  • 13
    • 84863042818 scopus 로고    scopus 로고
    • Latent low-rank representation for subspace segmentation and feature extraction
    • Liu, G. C., and Yan, S. C. 2011. Latent low-rank representation for subspace segmentation and feature extraction. IEEE International Conference on Computer Vision 1615-1622.
    • (2011) IEEE International Conference on Computer Vision , pp. 1615-1622
    • Liu, G.C.1    Yan, S.C.2
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 24
    • 33745812742 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, nonrigid, degenerate and non-degenerate
    • Springer
    • Yan, J., and Pollefeys, M. 2006. A general framework for motion segmentation: Independent, articulated, rigid, nonrigid, degenerate and non-degenerate. In Proc. of European Conference on Computer Vision, 94-106. Springer.
    • (2006) Proc. of European Conference on Computer Vision , pp. 94-106
    • Yan, J.1    Pollefeys, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.