-
2
-
-
79960675858
-
Robust principal component analysis?
-
1
-
E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(1):1-37, 2011. 1
-
(2011)
Journal of the ACM
, vol.58
, Issue.1
, pp. 1-37
-
-
Candès, E.1
Li, X.2
Ma, Y.3
Wright, J.4
-
3
-
-
0032154138
-
A multibody factorization method for independently moving objcets
-
1, 3
-
J. Costeira and T. Kanade. A multibody factorization method for independently moving objcets. IJCV, 29(3):159-179, 1998. 1, 3
-
(1998)
IJCV
, vol.29
, Issue.3
, pp. 159-179
-
-
Costeira, J.1
Kanade, T.2
-
4
-
-
84860257221
-
A least-squares framework for component analysis
-
June. 2, 4
-
F. De la Torre. A least-squares framework for component analysis. IEEE Trans. on PAMI, 34(6):1041-1055, June 2012. 2, 4
-
(2012)
IEEE Trans. on PAMI
, vol.34
, Issue.6
, pp. 041-1055
-
-
De La Torre, F.1
-
5
-
-
70450184118
-
Sparse subspace clustering
-
1, 2
-
E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, 2009. 1, 2
-
(2009)
CVPR
-
-
Elhamifar, E.1
Vidal, R.2
-
6
-
-
78049388384
-
Clustering disjoint subspaces via sparse representation
-
1, 2
-
E. Elhamifar and R. Vidal. Clustering disjoint subspaces via sparse representation. In ICASSP, 2010. 1, 2
-
(2010)
ICASSP
-
-
Elhamifar, E.1
Vidal, R.2
-
7
-
-
80052874540
-
A closed form solution to robust subspace estimation and clustering
-
1, 2
-
P. Favaro, R. Vidal, and A. Ravichandran. A closed form solution to robust subspace estimation and clustering. In CVPR, 2011. 1, 2
-
(2011)
CVPR
-
-
Favaro, P.1
Vidal, R.2
Ravichandran, A.3
-
8
-
-
0019574599
-
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
-
5
-
M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981. 5
-
(1981)
Communications of the ACM
, vol.24
, Issue.6
, pp. 381-395
-
-
Fischler, M.1
Bolles, R.2
-
9
-
-
0001474381
-
The statistical utilization of multiple measurements
-
2
-
A. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376-386, 1938. 2
-
(1938)
Annals of Eugenics
, vol.8
, pp. 376-386
-
-
Fisher, A.1
-
11
-
-
33745881038
-
Neighborhood preserving embedding
-
7
-
X. He, D. Cai, S. Yan, and H. Zhang. Neighborhood preserving embedding. In ICCV, 2005. 7
-
(2005)
ICCV
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.4
-
12
-
-
8644228268
-
Locality preserving projections
-
7
-
X. He and P. Niyogi. Locality preserving projections. In NIPS, 2003. 7
-
(2003)
NIPS
-
-
He, X.1
Niyogi, P.2
-
13
-
-
58149421595
-
Analysis of a complex of statistical variables into principal components
-
2, 4
-
H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6):417-441, 1933. 2, 4
-
(1933)
Journal of Educational Psychology
, vol.24
, Issue.6
, pp. 417-441
-
-
Hotelling, H.1
-
14
-
-
0000107975
-
Relations between two sets of variates
-
2
-
H. Hotelling. Relations between two sets of variates. Biometrika, 28:321-377, 1936. 2
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
15
-
-
77955690054
-
The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
-
2, 4
-
Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009. 2, 4
-
(2009)
UIUC Technical Report UILU-ENG-09-2215
-
-
Lin, Z.1
Chen, M.2
Wu, L.3
Ma, Y.4
-
16
-
-
85162350693
-
Linearized alternating direction method with adaptive penalty for low rank representation
-
2, 6
-
Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for low rank representation. In NIPS, 2011. 2, 6
-
(2011)
NIPS
-
-
Lin, Z.1
Liu, R.2
Su, Z.3
-
17
-
-
84866649220
-
Robust recovery of subspace structures by low-rank representation
-
submitted to. 1, 3, 7
-
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. submitted to IEEE Tran. on PAMI, 2011. 1, 3, 7
-
(2011)
IEEE Tran. on PAMI
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
18
-
-
77956529193
-
Robust subspace segmentation by low-rank representation
-
1, 2, 5
-
G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, 2010. 1, 2, 5
-
(2010)
ICML
-
-
Liu, G.1
Lin, Z.2
Yu, Y.3
-
20
-
-
84863042818
-
Latent low-rank representation for subspace segmentation and feature extraction
-
1, 2
-
G. Liu and S. Yan. Latent low-rank representation for subspace segmentation and feature extraction. In ICCV, 2011. 1, 2
-
(2011)
ICCV
-
-
Liu, G.1
Yan, S.2
-
21
-
-
80053145416
-
Multi-task feature learning via efficient l2;1-norm minimization
-
2
-
J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l2;1-norm minimization. In UAI, 2009. 2
-
(2009)
UAI
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
23
-
-
80052870941
-
Graph connectivity in sparse subspace clustering
-
1
-
B. Nasihatkon and R. Hartley. Graph connectivity in sparse subspace clustering. In CVPR, 2011. 1
-
(2011)
CVPR
-
-
Nasihatkon, B.1
Hartley, R.2
-
24
-
-
79951739650
-
Robust low-rank subspace segmentation with semidefinite guarantees
-
1, 2
-
Y. Ni, J. Sun, X. Yuan, S. Yan, and L. Cheong. Robust low-rank subspace segmentation with semidefinite guarantees. In ICDM Workshop, 2010. 1, 2
-
(2010)
ICDM Workshop
-
-
Ni, Y.1
Sun, J.2
Yuan, X.3
Yan, S.4
Cheong, L.5
-
27
-
-
77956034602
-
Motion segmentation in the presence of outlying, incomplete, and corrupted trajectories
-
1, 6
-
S. Rao, R.Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying, incomplete, and corrupted trajectories. IEEE Trans. on PAMI, 32(10):1832-1845, 2010. 1, 6
-
(2010)
IEEE Trans. on PAMI
, vol.32
, Issue.10
, pp. 1832-1845
-
-
Rao, S.1
Tron, R.2
Vidal, R.3
Ma, Y.4
-
28
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
1, 2, 3
-
B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010. 1, 2, 3
-
(2010)
SIAM Review
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.3
-
30
-
-
0034244751
-
Normalized cuts and image segmentation
-
1
-
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. on PAMI, 22(8):888-905, 2000. 1
-
(2000)
IEEE Trans. on PAMI
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
32
-
-
34948881815
-
A benchmark for the comparison of 3D montion segmentation algorithms
-
6
-
R. Tron and R. Vidal. A benchmark for the comparison of 3D montion segmentation algorithms. In CVPR, 2007. 6
-
(2007)
CVPR
-
-
Tron, R.1
Vidal, R.2
-
33
-
-
61549128441
-
Robust face recognition via sparse representation
-
1
-
J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Trans. on PAMI, 31(2):210-227, 2009. 1
-
(2009)
IEEE Trans. on PAMI
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.2
Ganesh, A.3
Sastry, S.4
Ma, Y.5
-
34
-
-
34948837349
-
A general framework for montion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate
-
5
-
J. Yan and M. Pollefeys. A general framework for montion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In ECCV, 2006. 5
-
(2006)
ECCV
-
-
Yan, J.1
Pollefeys, M.2
|