메뉴 건너뛰기




Volumn 54, Issue 23, 2016, Pages 7060-7073

A big data MapReduce framework for fault diagnosis in cloud-based manufacturing

Author keywords

big data analytics; class imbalance problem; fault diagnosis and Cloud based manufacturing; radial basis function; support vector machine (SVM)

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; CLASSIFICATION (OF INFORMATION); DATA HANDLING; FAILURE ANALYSIS; FUNCTIONS; INDUSTRIAL RESEARCH; LEARNING SYSTEMS; MANUFACTURE; PATTERN RECOGNITION; PROBLEM SOLVING; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84961198379     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207543.2016.1153166     Document Type: Article
Times cited : (100)

References (51)
  • 1
    • 84921264306 scopus 로고    scopus 로고
    • A Collaborative Framework for Social Media Aware Manufacturing
    • G.Andreadis, 2015. “A Collaborative Framework for Social Media Aware Manufacturing.” Manufacturing Letters 3 (3):14–17.10.1016/j.mfglet.2014.11.002
    • (2015) Manufacturing Letters , vol.3 , Issue.3 , pp. 14-17
    • Andreadis, G.1
  • 2
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for Learning in Class Imbalance Problems
    • R.Barandela, J.S.Sánchez, V.Garcı́a, and E.Rangel. 2003. “Strategies for Learning in Class Imbalance Problems.” Pattern Recognition 36 (3):849–851.10.1016/S0031-3203(02)00257-1
    • (2003) Pattern Recognition , vol.36 , Issue.3 , pp. 849-851
    • Barandela, R.1    Sánchez, J.S.2    Garcı́a, V.3    Rangel, E.4
  • 3
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning
    • S.Barua, M.Islam, X.Yao, and K.Murase. 2014. “MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning.” IEEE Transactions on Knowledge and Data Engineering 26 (2):405–425.10.1109/TKDE.2012.232
    • (2014) IEEE Transactions on Knowledge and Data Engineering , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.2    Yao, X.3    Murase, K.4
  • 4
    • 22944479635 scopus 로고    scopus 로고
    • Improving Rule Induction Precision for Automated Annotation by Balancing Skewed Data Sets
    • G.E.A.P.A.Batista, M.C.Monard, and A.L.C.Bazzan. 2004. “Improving Rule Induction Precision for Automated Annotation by Balancing Skewed Data Sets.” Knowledge Exploration in Life Science Informatics 3303 (3):20–32.10.1007/b103729
    • (2004) Knowledge Exploration in Life Science Informatics , vol.3303 , Issue.3 , pp. 20-32
    • Batista, G.E.A.P.A.1    Monard, M.C.2    Bazzan, A.L.C.3
  • 5
    • 84857022489 scopus 로고    scopus 로고
    • Adjusted Geometric-Mean: A Novel Performance Measure for Imbalanced Bioinformatics Datasets Learning
    • R.Batuwita, and V.Palade. 2012. “Adjusted Geometric-Mean:A Novel Performance Measure for Imbalanced Bioinformatics Datasets Learning.” Journal of Bioinformatics and Computational Biology 10 (4):1–24.
    • (2012) Journal of Bioinformatics and Computational Biology , vol.10 , Issue.4 , pp. 1-24
    • Batuwita, R.1    Palade, V.2
  • 10
    • 33750474874 scopus 로고    scopus 로고
    • Consensus-based Intelligent Group Decision-making Model for the Selection of Advanced Technology
    • A.K.Choudhury, R.Shankar, and M.K.Tiwari. 2006. “Consensus-based Intelligent Group Decision-making Model for the Selection of Advanced Technology.” Decision Support Systems 42 (3):1776–1799.10.1016/j.dss.2005.05.001
    • (2006) Decision Support Systems , vol.42 , Issue.3 , pp. 1776-1799
    • Choudhury, A.K.1    Shankar, R.2    Tiwari, M.K.3
  • 11
    • 72449130980 scopus 로고    scopus 로고
    • Data Mining in Manufacturing: A Review Based on the Kind of Knowledge
    • A.K.Choudhary, J.A.Harding, and M.K.Tiwari. 2009. “Data Mining in Manufacturing:A Review Based on the Kind of Knowledge.” Journal of Intelligent Manufacturing 20 (5):501–521.10.1007/s10845-008-0145-x
    • (2009) Journal of Intelligent Manufacturing , vol.20 , Issue.5 , pp. 501-521
    • Choudhary, A.K.1    Harding, J.A.2    Tiwari, M.K.3
  • 12
    • 84894092447 scopus 로고    scopus 로고
    • A Real Time Clustering and SVM Based Price-Volatility Prediction for Optimal Trading Strategy
    • S.Choudhury, S.Ghosh, A.Bhattacharya, and K.J.Fernandes. 2014. “A Real Time Clustering and SVM Based Price-Volatility Prediction for Optimal Trading Strategy.” Neurocomputing 131 (5):419–426.10.1016/j.neucom.2013.10.002
    • (2014) Neurocomputing , vol.131 , Issue.5 , pp. 419-426
    • Choudhury, S.1    Ghosh, S.2    Bhattacharya, A.3    Fernandes, K.J.4
  • 13
    • 79151474872 scopus 로고    scopus 로고
    • Application of Multiclass Support Vector Machines for Fault Diagnosis of Field Air Defense Gun
    • S.Deng, S.Y.Lin, and W.L.Chang. 2011. “Application of Multiclass Support Vector Machines for Fault Diagnosis of Field Air Defense Gun.” Expert Systems with Applications 38 (5):6007–6013.10.1016/j.eswa.2010.11.020
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 6007-6013
    • Deng, S.1    Lin, S.Y.2    Chang, W.L.3
  • 14
    • 35148865370 scopus 로고    scopus 로고
    • Rough Set and Fuzzy Wavelet Neural Network Integrated with Least Square Weighted Fusion Algorithm Based Fault Diagnosis Research for Power Transformers
    • L.Dong, D.Xiao, Y.Liang, and Y.Liu. 2008. “Rough Set and Fuzzy Wavelet Neural Network Integrated with Least Square Weighted Fusion Algorithm Based Fault Diagnosis Research for Power Transformers.” Electric Power Systems Research 78 (1):129–136.10.1016/j.epsr.2006.12.013
    • (2008) Electric Power Systems Research , vol.78 , Issue.1 , pp. 129-136
    • Dong, L.1    Xiao, D.2    Liang, Y.3    Liu, Y.4
  • 16
    • 77957925437 scopus 로고    scopus 로고
    • Designing a Hierarchical Neural Network Based on Fuzzy Clustering for Fault Diagnosis of the Tennessee-Eastman Process
    • R.Eslamloueyan, 2011. “Designing a Hierarchical Neural Network Based on Fuzzy Clustering for Fault Diagnosis of the Tennessee-Eastman Process.” Applied Soft Computing 11 (1):1407–1415.10.1016/j.asoc.2010.04.012
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 1407-1415
    • Eslamloueyan, R.1
  • 17
    • 84859213527 scopus 로고    scopus 로고
    • Preprocessing Unbalanced Data Using Support Vector Machine
    • M.A.H.Farquad, and I.Bose. 2012. “Preprocessing Unbalanced Data Using Support Vector Machine.” Decision Support Systems 53 (1):226–233.10.1016/j.dss.2012.01.016
    • (2012) Decision Support Systems , vol.53 , Issue.1 , pp. 226-233
    • Farquad, M.A.H.1    Bose, I.2
  • 18
    • 84896849083 scopus 로고    scopus 로고
    • Churn Prediction Using Comprehensible Support Vector Machine: An Analytical CRM Application
    • M.A.H.Farquad, V.Ravi, and S.B.Raju. 2014. “Churn Prediction Using Comprehensible Support Vector Machine:An Analytical CRM Application.” Applied Soft Computing 19 (1):31–40.10.1016/j.asoc.2014.01.031
    • (2014) Applied Soft Computing , vol.19 , Issue.1 , pp. 31-40
    • Farquad, M.A.H.1    Ravi, V.2    Raju, S.B.3
  • 19
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the Classification of Imbalanced Data-Sets with Multiple Classes: Binarization Techniques and Ad Hoc Approaches
    • A.Fernández, V.López, M.Galar, M.J.del Jesus, and F.Herrera 2013. “Analysing the Classification of Imbalanced Data-Sets with Multiple Classes:Binarization Techniques and Ad Hoc Approaches.” Knowledge-Based System 42 (1):97–110.
    • (2013) Knowledge-Based System , vol.42 , Issue.1 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    del Jesus, M.J.4    Herrera, F.5
  • 20
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • A.Frank, and A.Asuncion. 2010. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:University of California, School of Information and Computer Science.
    • (2010) UCI Machine Learning Repository []
    • Frank, A.1    Asuncion, A.2
  • 22
    • 27144479454 scopus 로고    scopus 로고
    • Learning from Imbalanced Data Sets with Boosting and Data Generation
    • H.Guo, and H.L.Viktor. 2004. “Learning from Imbalanced Data Sets with Boosting and Data Generation.” ACM SIGKDD Explorations Newsletter 6 (1):30–39.10.1145/1007730
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 27
    • 27144540575 scopus 로고    scopus 로고
    • Class Imbalances versus Small Disjuncts
    • T.Japkowicz, and N.Jo. 2004. “Class Imbalances versus Small Disjuncts.” SIGKDD Explorations 6 (1):40–49.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 40-49
    • Japkowicz, T.1    Jo, N.2
  • 29
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the Curse of Imbalanced Training Sets: One Sided Selection
    • Nashville, TN, USA:
    • M.Kubat, and S.Matwin. 1997. “Addressing the Curse of Imbalanced Training Sets:One Sided Selection.” 14th International Conference on Machine Learning, Nashville, TN, USA, 179–186.
    • (1997) 14th International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 30
    • 33748437416 scopus 로고    scopus 로고
    • Solving Machine Loading Problem of a Flexible Manufacturing System with Constraint-Based Genetic Algorithm
    • A.Kumar, Prakash, M.K.Tiwari, R.Shankar and A.Baveja. 2005. “Solving Machine Loading Problem of a Flexible Manufacturing System with Constraint-Based Genetic Algorithm.” European Journal of Operation Research 175 (2):1043–1069.
    • (2005) European Journal of Operation Research , vol.175 , Issue.2 , pp. 1043-1069
    • Kumar, A.1    Prakash2    Tiwari, M.K.3    Shankar, R.4    Baveja, A.5
  • 31
    • 29344469347 scopus 로고    scopus 로고
    • Kernel Distance-based Robust Support Vector Methods and Its Application in Developing a Robust K-chart
    • S.Kumar, A.K.Choudhary, M.Kumar, and R.Shankar. 2006. “Kernel Distance-based Robust Support Vector Methods and Its Application in Developing a Robust K-chart.” International Journal of Production Research 44 (1):77–96.10.1080/00207540500216037
    • (2006) International Journal of Production Research , vol.44 , Issue.1 , pp. 77-96
    • Kumar, S.1    Choudhary, A.K.2    Kumar, M.3    Shankar, R.4
  • 33
    • 77957906760 scopus 로고    scopus 로고
    • Fault Diagnosis of the Polypropylene Production Process (UNIPOL PP) Using ANFIS
    • C.K.Lau, Y.S.Heng, M.A.Hussain, and M.I.Mohamad Nor. 2010. “Fault Diagnosis of the Polypropylene Production Process (UNIPOL PP) Using ANFIS.” ISA Transactions 49 (4):559–566.10.1016/j.isatra.2010.06.007
    • (2010) ISA Transactions , vol.49 , Issue.4 , pp. 559-566
    • Lau, C.K.1    Heng, Y.S.2    Hussain, M.A.3    Mohamad Nor, M.I.4
  • 34
    • 84881081357 scopus 로고    scopus 로고
    • Predictive Factories: The Next Transformation
    • J.Lee, and E.Lapira. 2013. “Predictive Factories:The Next Transformation.” Manufacturing Leadership Journal 20 (1):13–24.
    • (2013) Manufacturing Leadership Journal , vol.20 , Issue.1 , pp. 13-24
    • Lee, J.1    Lapira, E.2
  • 36
    • 84921300723 scopus 로고    scopus 로고
    • A Cyber-physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
    • J.Lee, B.Bagheri, and H.A.Kao. 2015. “A Cyber-physical Systems Architecture for Industry 4.0-Based Manufacturing Systems.” Manufacturing Letters 3 (1):18–23.10.1016/j.mfglet.2014.12.001
    • (2015) Manufacturing Letters , vol.3 , Issue.1 , pp. 18-23
    • Lee, J.1    Bagheri, B.2    Kao, H.A.3
  • 39
    • 0036781284 scopus 로고    scopus 로고
    • Fusion of Qualitative Bond Graph and Genetic Algorithms: A Fault Diagnosis Application
    • C.H.Lo, Y.K.Wong, A.B.Rad, and K.M.Chow. 2002. “Fusion of Qualitative Bond Graph and Genetic Algorithms:A Fault Diagnosis Application.” ISA Transactions 41 (2):445–456.
    • (2002) ISA Transactions , vol.41 , Issue.2 , pp. 445-456
    • Lo, C.H.1    Wong, Y.K.2    Rad, A.B.3    Chow, K.M.4
  • 41
    • 0033224863 scopus 로고    scopus 로고
    • Assessment of Circularity Error Using a Selective Data Partition Approach
    • K.Rajagopal, and S.Anand. 1999. “Assessment of Circularity Error Using a Selective Data Partition Approach.” International Journal of Production Research 37 (17):3959–3979.10.1080/002075499189862
    • (1999) International Journal of Production Research , vol.37 , Issue.17 , pp. 3959-3979
    • Rajagopal, K.1    Anand, S.2
  • 43
    • 84906873734 scopus 로고    scopus 로고
    • On the Use of Map Reduce for Imbalanced Big Data Using Random Forest
    • S.Río, V.López, J.M.Benítez, and F.Herrera. 2014. “On the Use of Map Reduce for Imbalanced Big Data Using Random Forest.” Information Science. 285 (1):112–137.
    • (2014) Information Science. , vol.285 , Issue.1 , pp. 112-137
    • Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 45
    • 0034248819 scopus 로고    scopus 로고
    • Fault Diagnosis in Power Plant Using Neural Networks
    • S.Simani, and C.Fantuzzi. 2000. “Fault Diagnosis in Power Plant Using Neural Networks.” Information. Sciences 127 (3–4):125–136.10.1016/S0020-0255(00)00034-7
    • (2000) Information. Sciences , vol.127 , Issue.3-4 , pp. 125-136
    • Simani, S.1    Fantuzzi, C.2
  • 46
    • 0034692672 scopus 로고    scopus 로고
    • Solving Machine Loading Problems in a Flexible Manufacturing System Using a Genetic Algorithm Based Heuristic Approach
    • M.K.Tiwari, and N.K.Vidyarthi. 2000. “Solving Machine Loading Problems in a Flexible Manufacturing System Using a Genetic Algorithm Based Heuristic Approach.” International Journal of Production Research 38 (14):3357–3384.10.1080/002075400418298
    • (2000) International Journal of Production Research , vol.38 , Issue.14 , pp. 3357-3384
    • Tiwari, M.K.1    Vidyarthi, N.K.2
  • 47
    • 84912528763 scopus 로고    scopus 로고
    • A Data Mining Approach to Optimise Shelf Space Allocation in Consideration of Customer Purchase and Moving Behaviours
    • C.Y.Tsai, and S.H.Huang. 2015. “A Data Mining Approach to Optimise Shelf Space Allocation in Consideration of Customer Purchase and Moving Behaviours.” International Journal of Production Research 53 (3):850–856.
    • (2015) International Journal of Production Research , vol.53 , Issue.3 , pp. 850-856
    • Tsai, C.Y.1    Huang, S.H.2
  • 48
    • 44649170363 scopus 로고    scopus 로고
    • Boosting Support Vector Machines for Imbalanced Data Sets
    • B.X.Wang, and N.Japkowicz. 2008. “Boosting Support Vector Machines for Imbalanced Data Sets.” Lecture Notes Artificial Intelligence 49 (9):38–47.
    • (2008) Lecture Notes Artificial Intelligence , vol.49 , Issue.9 , pp. 38-47
    • Wang, B.X.1    Japkowicz, N.2
  • 49
    • 84947042973 scopus 로고    scopus 로고
    • Failure Time Prediction for Mechanical Device Based on the Degradation Sequence
    • Y.Wang, C.Deng, J.Wu, and Y.Xiong. 2015. “Failure Time Prediction for Mechanical Device Based on the Degradation Sequence.” Journal of Intelligent Manufacturing 6 (1):1–19.
    • (2015) Journal of Intelligent Manufacturing , vol.6 , Issue.1 , pp. 1-19
    • Wang, Y.1    Deng, C.2    Wu, J.3    Xiong, Y.4
  • 50
    • 84906832119 scopus 로고    scopus 로고
    • Cloud-based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
    • D.Wu, D.W.Rosen, L.Wang, and D.Schaefer. 2015. “Cloud-based Design and Manufacturing:A New Paradigm in Digital Manufacturing and Design Innovation.” Computer-Aided Design 59 (1):1–14.
    • (2015) Computer-Aided Design , vol.59 , Issue.1 , pp. 1-14
    • Wu, D.1    Rosen, D.W.2    Wang, L.3    Schaefer, D.4
  • 51
    • 80052032966 scopus 로고    scopus 로고
    • From Cloud Computing to Cloud Manufacturing
    • X.Xu, 2012. “From Cloud Computing to Cloud Manufacturing.” Robotics and Computer-Integrated Manufacturing 28 (1):75–86.10.1016/j.rcim.2011.07.002
    • (2012) Robotics and Computer-Integrated Manufacturing , vol.28 , Issue.1 , pp. 75-86
    • Xu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.