메뉴 건너뛰기




Volumn 428, Issue 16, 2016, Pages 3183-3193

Glycosylation Quality Control by the Golgi Structure

Author keywords

CDG; COG complex; Golgi stacks; GRASPs; protein glycosylation

Indexed keywords

GLYCOCONJUGATE; GLYCOPROTEIN; GLYCOSYLTRANSFERASE; GOLGI REASSEMBLY STACKING PROTEIN 55; GOLGI REASSEMBLY STACKING PROTEIN 65; MANNOSE; NUCLEOTIDE; UNCLASSIFIED DRUG; MEMBRANE PROTEIN;

EID: 84961167058     PISSN: 00222836     EISSN: 10898638     Source Type: Journal    
DOI: 10.1016/j.jmb.2016.02.030     Document Type: Review
Times cited : (107)

References (116)
  • 1
    • 84862492324 scopus 로고    scopus 로고
    • Models for Golgi traffic: a critical assessment
    • [1] Glick, B.S., Luini, A., Models for Golgi traffic: a critical assessment. Cold Spring Harb. Perspect. Biol., 3, 2011, a005215.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3 , pp. a005215
    • Glick, B.S.1    Luini, A.2
  • 2
    • 0020378964 scopus 로고
    • The internal reticular apparatus of Camillo Golgi: a complex, heterogeneous organelle, enriched in acid, neutral, and alkaline phosphatases, and involved in glycosylation, secretion, membrane flow, lysosome formation, and intracellular digestion
    • [2] Goldfischer, S., The internal reticular apparatus of Camillo Golgi: a complex, heterogeneous organelle, enriched in acid, neutral, and alkaline phosphatases, and involved in glycosylation, secretion, membrane flow, lysosome formation, and intracellular digestion. J. Histochem. Cytochem. 30 (1982), 717–733.
    • (1982) J. Histochem. Cytochem. , vol.30 , pp. 717-733
    • Goldfischer, S.1
  • 3
    • 84890086229 scopus 로고    scopus 로고
    • A prize for membrane magic
    • [3] Pfeffer, S.R., A prize for membrane magic. Cell 155 (2013), 1203–1206.
    • (2013) Cell , vol.155 , pp. 1203-1206
    • Pfeffer, S.R.1
  • 5
    • 0023483439 scopus 로고
    • Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat: an electron microscope stereoscopic study
    • [5] Rambourg, A., Clermont, Y., Hermo, L., Segretain, D., Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat: an electron microscope stereoscopic study. Biol. Cell. 60 (1987), 103–115.
    • (1987) Biol. Cell. , vol.60 , pp. 103-115
    • Rambourg, A.1    Clermont, Y.2    Hermo, L.3    Segretain, D.4
  • 6
    • 0033594080 scopus 로고    scopus 로고
    • Golgi structure in three dimensions: functional insights from the normal rat kidney cell
    • [6] Ladinsky, M.S., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., Staehelin, L.A., Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144 (1999), 1135–1149.
    • (1999) J. Cell Biol. , vol.144 , pp. 1135-1149
    • Ladinsky, M.S.1    Mastronarde, D.N.2    McIntosh, J.R.3    Howell, K.E.4    Staehelin, L.A.5
  • 9
    • 84863871896 scopus 로고    scopus 로고
    • Golgi glycosylation and human inherited diseases
    • a005371
    • [9] Freeze, H.H., Ng, B.G., Golgi glycosylation and human inherited diseases. Cold Spring Harb. Perspect. Biol., 3, 2011, a005371.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3
    • Freeze, H.H.1    Ng, B.G.2
  • 10
    • 84862728161 scopus 로고    scopus 로고
    • Vertebrate protein glycosylation: diversity, synthesis and function
    • [10] Moremen, K.W., Tiemeyer, M., Nairn, A.V., Vertebrate protein glycosylation: diversity, synthesis and function. Nat.ure Rev. 13 (2012), 448–462.
    • (2012) Nat.ure Rev. , vol.13 , pp. 448-462
    • Moremen, K.W.1    Tiemeyer, M.2    Nairn, A.V.3
  • 11
    • 70349323001 scopus 로고    scopus 로고
    • Golgi linked protein glycosylation and associated diseases
    • [11] Ungar, D., Golgi linked protein glycosylation and associated diseases. Semin. Cell Dev. Biol. 20 (2009), 762–769.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 762-769
    • Ungar, D.1
  • 12
    • 84928254126 scopus 로고    scopus 로고
    • A little sugar goes a long way: the cell biology of O-GlcNAc
    • [12] Bond, M.R., Hanover, J.A., A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208 (2015), 869–880.
    • (2015) J. Cell Biol. , vol.208 , pp. 869-880
    • Bond, M.R.1    Hanover, J.A.2
  • 13
    • 0021280147 scopus 로고
    • Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc
    • [13] Torres, C.R., Hart, G.W., Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259 (1984), 3308–3317.
    • (1984) J. Biol. Chem. , vol.259 , pp. 3308-3317
    • Torres, C.R.1    Hart, G.W.2
  • 14
    • 59449103217 scopus 로고    scopus 로고
    • Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases
    • [14] Schegg, B., Hulsmeier, A.J., Rutschmann, C., Maag, C., Hennet, T., Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell. Biol. 29 (2009), 943–952.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 943-952
    • Schegg, B.1    Hulsmeier, A.J.2    Rutschmann, C.3    Maag, C.4    Hennet, T.5
  • 15
    • 84855837562 scopus 로고    scopus 로고
    • Mechanisms of monomeric and dimeric glycogenin autoglucosylation
    • [15] Issoglio, F.M., Carrizo, M.E., Romero, J.M., Curtino, J.A., Mechanisms of monomeric and dimeric glycogenin autoglucosylation. J. Biol. Chem. 287 (2012), 1955–1961.
    • (2012) J. Biol. Chem. , vol.287 , pp. 1955-1961
    • Issoglio, F.M.1    Carrizo, M.E.2    Romero, J.M.3    Curtino, J.A.4
  • 16
    • 0035794220 scopus 로고    scopus 로고
    • C-mannosylation and O-fucosylation of the thrombospondin type 1 module
    • [16] Hofsteenge, J., Huwiler, K.G., Macek, B., Hess, D., Lawler, J., Mosher, D.F., et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J. Biol. Chem. 276 (2001), 6485–6498.
    • (2001) J. Biol. Chem. , vol.276 , pp. 6485-6498
    • Hofsteenge, J.1    Huwiler, K.G.2    Macek, B.3    Hess, D.4    Lawler, J.5    Mosher, D.F.6
  • 18
    • 0032754473 scopus 로고    scopus 로고
    • On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database
    • [18] Apweiler, R., Hermjakob, H., Sharon, N., On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473 (1999), 4–8.
    • (1999) Biochim. Biophys. Acta. , vol.1473 , pp. 4-8
    • Apweiler, R.1    Hermjakob, H.2    Sharon, N.3
  • 19
    • 0021891884 scopus 로고
    • Assembly of asparagine-linked oligosaccharides
    • [19] Kornfeld, R., Kornfeld, S., Assembly of asparagine-linked oligosaccharides. Biochim. Biophys. Acta. 54 (1985), 631–664.
    • (1985) Biochim. Biophys. Acta. , vol.54 , pp. 631-664
    • Kornfeld, R.1    Kornfeld, S.2
  • 20
    • 79959191882 scopus 로고    scopus 로고
    • X-ray structure of a bacterial oligosaccharyltransferase
    • [20] Lizak, C., Gerber, S., Numao, S., Aebi, M., Locher, K.P., X-ray structure of a bacterial oligosaccharyltransferase. Nature. 474 (2011), 350–355.
    • (2011) Nature. , vol.474 , pp. 350-355
    • Lizak, C.1    Gerber, S.2    Numao, S.3    Aebi, M.4    Locher, K.P.5
  • 21
    • 33645103490 scopus 로고    scopus 로고
    • An evolving view of the eukaryotic oligosaccharyltransferase
    • [21] Kelleher, D.J., Gilmore, R., An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 16 (2006), 47R–62R.
    • (2006) Glycobiology. , vol.16 , pp. 47R-62R
    • Kelleher, D.J.1    Gilmore, R.2
  • 22
    • 84859811827 scopus 로고    scopus 로고
    • Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells
    • M111
    • [22] An, H.J., Gip, P., Kim, J., Wu, S., Park, K.W., McVaugh, C.T., et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteomics, 11, 2012, 010660, M111.
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 010660
    • An, H.J.1    Gip, P.2    Kim, J.3    Wu, S.4    Park, K.W.5    McVaugh, C.T.6
  • 23
    • 0035827374 scopus 로고    scopus 로고
    • What can yeast tell us about N-linked glycosylation in the Golgi apparatus?
    • [23] Munro, S., What can yeast tell us about N-linked glycosylation in the Golgi apparatus?. FEBS Lett. 498 (2001), 223–227.
    • (2001) FEBS Lett. , vol.498 , pp. 223-227
    • Munro, S.1
  • 24
    • 77956054494 scopus 로고    scopus 로고
    • O-GalNAc glycans
    • A. Varki Cummings RD Esko JD Freeze HH P. Stanley Bertozzi CR et al. (eds.) second ed. Cold Spring Harbor (NY)
    • [24] Brockhausen, I., Schachter, H., Stanley, P., O-GalNAc glycans. Varki, A., RD, Cummings, JD, Esko, HH, Freeze, Stanley, P., CR, Bertozzi, et al. (eds.) Essentials of Glycobiology, second ed., 2009, Cold Spring Harbor (NY).
    • (2009) Essentials of Glycobiology
    • Brockhausen, I.1    Schachter, H.2    Stanley, P.3
  • 25
    • 34250878429 scopus 로고    scopus 로고
    • Notch signaling in normal and disease states: possible therapies related to glycosylation
    • [25] Rampal, R., Luther, K.B., Haltiwanger, R.S., Notch signaling in normal and disease states: possible therapies related to glycosylation. Curr. Mol. Med. 7 (2007), 427–445.
    • (2007) Curr. Mol. Med. , vol.7 , pp. 427-445
    • Rampal, R.1    Luther, K.B.2    Haltiwanger, R.S.3
  • 26
    • 77956331145 scopus 로고    scopus 로고
    • Roles of glycosylation in Notch signaling
    • [26] Stanley, P., Okajima, T., Roles of glycosylation in Notch signaling. Curr. Top. Dev. Biol. 92 (2010), 131–164.
    • (2010) Curr. Top. Dev. Biol. , vol.92 , pp. 131-164
    • Stanley, P.1    Okajima, T.2
  • 27
    • 33845988743 scopus 로고    scopus 로고
    • Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats
    • [27] Kozma, K., Keusch, J.J., Hegemann, B., Luther, K.B., Klein, D., Hess, D., et al. Identification and characterization of abeta1,3-glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on thrombospondin type 1 repeats. J. Biol. Chem. 281 (2006), 36,742–36,751.
    • (2006) J. Biol. Chem. , vol.281 , pp. 36742-36751
    • Kozma, K.1    Keusch, J.J.2    Hegemann, B.3    Luther, K.B.4    Klein, D.5    Hess, D.6
  • 28
    • 0031026624 scopus 로고    scopus 로고
    • Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin
    • [28] Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S., et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J. Biol. Chem. 272 (1997), 2156–2162.
    • (1997) J. Biol. Chem. , vol.272 , pp. 2156-2162
    • Chiba, A.1    Matsumura, K.2    Yamada, H.3    Inazu, T.4    Shimizu, T.5    Kusunoki, S.6
  • 29
    • 0035095886 scopus 로고    scopus 로고
    • A new beta-1,2-N-acetylglucosaminyltransferase that may play a role in the biosynthesis of mammalian O-mannosyl glycans
    • [29] Takahashi, S., Sasaki, T., Manya, H., Chiba, Y., Yoshida, A., Mizuno, M., et al. A new beta-1,2-N-acetylglucosaminyltransferase that may play a role in the biosynthesis of mammalian O-mannosyl glycans. Glycobiology. 11 (2001), 37–45.
    • (2001) Glycobiology. , vol.11 , pp. 37-45
    • Takahashi, S.1    Sasaki, T.2    Manya, H.3    Chiba, Y.4    Yoshida, A.5    Mizuno, M.6
  • 30
    • 0031881719 scopus 로고    scopus 로고
    • Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor
    • [30] Doucey, M.A., Hess, D., Cacan, R., Hofsteenge, J., Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol. Biol. Cell. 9 (1998), 291–300.
    • (1998) Mol. Biol. Cell. , vol.9 , pp. 291-300
    • Doucey, M.A.1    Hess, D.2    Cacan, R.3    Hofsteenge, J.4
  • 31
    • 77951895530 scopus 로고    scopus 로고
    • Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins
    • [31] Fujita, M., Kinoshita, T., Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett. 584 (2010), 1670–1677.
    • (2010) FEBS Lett. , vol.584 , pp. 1670-1677
    • Fujita, M.1    Kinoshita, T.2
  • 32
    • 58149287887 scopus 로고    scopus 로고
    • Identification of a glycosylphosphatidylinositol anchor-modifying beta1-3 N-acetylglucosaminyl transferase in Trypanosoma brucei
    • [32] Izquierdo, L., Nakanishi, M., Mehlert, A., Machray, G., Barton, G.J., Ferguson, M.A., Identification of a glycosylphosphatidylinositol anchor-modifying beta1-3 N-acetylglucosaminyl transferase in Trypanosoma brucei. Mol. Microbiol. 71 (2009), 478–491.
    • (2009) Mol. Microbiol. , vol.71 , pp. 478-491
    • Izquierdo, L.1    Nakanishi, M.2    Mehlert, A.3    Machray, G.4    Barton, G.J.5    Ferguson, M.A.6
  • 33
    • 84946559140 scopus 로고    scopus 로고
    • Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function
    • [33] Climer, L.K., Dobretsov, M., Lupashin, V., Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci., 9, 2015, 405.
    • (2015) Front. Neurosci. , vol.9 , pp. 405
    • Climer, L.K.1    Dobretsov, M.2    Lupashin, V.3
  • 34
    • 29244449332 scopus 로고    scopus 로고
    • Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes
    • [34] Ohtsubo, K., Takamatsu, S., Minowa, M.T., Yoshida, A., Takeuchi, M., Marth, J.D., Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell. 123 (2005), 1307–1321.
    • (2005) Cell. , vol.123 , pp. 1307-1321
    • Ohtsubo, K.1    Takamatsu, S.2    Minowa, M.T.3    Yoshida, A.4    Takeuchi, M.5    Marth, J.D.6
  • 35
    • 0016439297 scopus 로고
    • Changed surface glycoprotein as a marker of malignancy in human leukaemic cells
    • [35] Van Beek, W.P., Smets, L.A., Emmelot, P., Changed surface glycoprotein as a marker of malignancy in human leukaemic cells. Nature. 253 (1975), 457–460.
    • (1975) Nature. , vol.253 , pp. 457-460
    • Van Beek, W.P.1    Smets, L.A.2    Emmelot, P.3
  • 36
    • 0036895829 scopus 로고    scopus 로고
    • Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients
    • [36] Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M., Gautier, C., Perez, S., et al. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 9 (2002), 918–921.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 918-921
    • Mitchell, E.1    Houles, C.2    Sudakevitz, D.3    Wimmerova, M.4    Gautier, C.5    Perez, S.6
  • 38
    • 33644756640 scopus 로고    scopus 로고
    • GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution
    • [38] Puthenveedu, M.A., Bachert, C., Puri, S., Lanni, F., Linstedt, A.D., GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat. Cell Biol. 8 (2006), 238–248.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 238-248
    • Puthenveedu, M.A.1    Bachert, C.2    Puri, S.3    Lanni, F.4    Linstedt, A.D.5
  • 40
    • 85043393553 scopus 로고    scopus 로고
    • GRASPs in Golgi structure and function
    • [40] Zhang, X., Wang, Y., GRASPs in Golgi structure and function. Front. Cell Dev. Biol., 3, 2015, 84.
    • (2015) Front. Cell Dev. Biol. , vol.3 , pp. 84
    • Zhang, X.1    Wang, Y.2
  • 41
    • 0010531422 scopus 로고
    • Intercisternal elements of the Golgi apparatus
    • [41] Turner, F.R., Whaley, W.G., Intercisternal elements of the Golgi apparatus. Science. 147 (1965), 1303–1304.
    • (1965) Science. , vol.147 , pp. 1303-1304
    • Turner, F.R.1    Whaley, W.G.2
  • 43
    • 80052050890 scopus 로고    scopus 로고
    • The origins and evolution of freeze-etch electron microscopy
    • [43] Heuser, J.E., The origins and evolution of freeze-etch electron microscopy. J. Electron Microsc. 60:Suppl. 1 (2011), S3–29.
    • (2011) J. Electron Microsc. , vol.60 , pp. S3-29
    • Heuser, J.E.1
  • 44
    • 0027055402 scopus 로고
    • Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures
    • [44] Cluett, E.B., Brown, W.J., Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures. J. Cell Sci. 103 (1992), 773–784.
    • (1992) J. Cell Sci. , vol.103 , pp. 773-784
    • Cluett, E.B.1    Brown, W.J.2
  • 45
    • 79958257226 scopus 로고    scopus 로고
    • New components of the Golgi matrix
    • [45] Xiang, Y., Wang, Y., New components of the Golgi matrix. Cell Tissue Res. 344 (2011), 365–379.
    • (2011) Cell Tissue Res. , vol.344 , pp. 365-379
    • Xiang, Y.1    Wang, Y.2
  • 46
    • 0030662715 scopus 로고    scopus 로고
    • GRASP65, a protein involved in the stacking of Golgi cisternae
    • [46] Barr, F.A., Puype, M., Vandekerckhove, J., Warren, G., GRASP65, a protein involved in the stacking of Golgi cisternae. Cell. 91 (1997), 253–262.
    • (1997) Cell. , vol.91 , pp. 253-262
    • Barr, F.A.1    Puype, M.2    Vandekerckhove, J.3    Warren, G.4
  • 47
    • 0033568489 scopus 로고    scopus 로고
    • GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system
    • [47] Shorter, J., Watson, R., Giannakou, M.E., Clarke, M., Warren, G., Barr, F.A., GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18 (1999), 4949–4960.
    • (1999) EMBO J. , vol.18 , pp. 4949-4960
    • Shorter, J.1    Watson, R.2    Giannakou, M.E.3    Clarke, M.4    Warren, G.5    Barr, F.A.6
  • 48
    • 24344453350 scopus 로고    scopus 로고
    • dGRASP localization and function in the early exocytic pathway in Drosophila S2 cells
    • [48] Kondylis, V., Spoorendonk, K.M., Rabouille, C., dGRASP localization and function in the early exocytic pathway in Drosophila S2 cells. Mol. Biol. Cell. 16 (2005), 4061–4072.
    • (2005) Mol. Biol. Cell. , vol.16 , pp. 4061-4072
    • Kondylis, V.1    Spoorendonk, K.M.2    Rabouille, C.3
  • 49
    • 33846590554 scopus 로고    scopus 로고
    • The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic
    • [49] Behnia, R., Barr, F.A., Flanagan, J.J., Barlowe, C., Munro, S., The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J. Cell Biol. 176 (2007), 255–261.
    • (2007) J. Cell Biol. , vol.176 , pp. 255-261
    • Behnia, R.1    Barr, F.A.2    Flanagan, J.J.3    Barlowe, C.4    Munro, S.5
  • 50
    • 48049090703 scopus 로고    scopus 로고
    • Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism
    • [50] Struck, N.S., Herrmann, S., Langer, C., Krueger, A., Foth, B.J., Engelberg, K., et al. Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. J. Cell Sci. 121 (2008), 2123–2129.
    • (2008) J. Cell Sci. , vol.121 , pp. 2123-2129
    • Struck, N.S.1    Herrmann, S.2    Langer, C.3    Krueger, A.4    Foth, B.J.5    Engelberg, K.6
  • 52
    • 59849096584 scopus 로고    scopus 로고
    • Ultrastructural study of Golgi duplication in Trypanosoma brucei
    • [52] Yelinek, J.T., He, C.Y., Warren, G., Ultrastructural study of Golgi duplication in Trypanosoma brucei. Traffic. 10 (2009), 300–306.
    • (2009) Traffic. , vol.10 , pp. 300-306
    • Yelinek, J.T.1    He, C.Y.2    Warren, G.3
  • 53
    • 78751529769 scopus 로고    scopus 로고
    • The multiple facets of the Golgi reassembly stacking proteins
    • [53] Vinke, F.P., Grieve, A.G., Rabouille, C., The multiple facets of the Golgi reassembly stacking proteins. Biochem. J. 433 (2011), 423–433.
    • (2011) Biochem. J. , vol.433 , pp. 423-433
    • Vinke, F.P.1    Grieve, A.G.2    Rabouille, C.3
  • 54
    • 76149083892 scopus 로고    scopus 로고
    • GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking
    • [54] Xiang, Y., Wang, Y., GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J. Cell Biol. 188 (2010), 237–251.
    • (2010) J. Cell Biol. , vol.188 , pp. 237-251
    • Xiang, Y.1    Wang, Y.2
  • 55
    • 0037926394 scopus 로고    scopus 로고
    • A direct role for GRASP65 as a mitotically regulated Golgi stacking factor
    • [55] Wang, Y., Seemann, J., Pypaert, M., Shorter, J., Warren, G., A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22 (2003), 3279–3290.
    • (2003) EMBO J. , vol.22 , pp. 3279-3290
    • Wang, Y.1    Seemann, J.2    Pypaert, M.3    Shorter, J.4    Warren, G.5
  • 56
    • 14244259922 scopus 로고    scopus 로고
    • Mapping the functional domains of the Golgi stacking factor GRASP65
    • [56] Wang, Y., Satoh, A., Warren, G., Mapping the functional domains of the Golgi stacking factor GRASP65. J. Biol. Chem. 280 (2005), 4921–4928.
    • (2005) J. Biol. Chem. , vol.280 , pp. 4921-4928
    • Wang, Y.1    Satoh, A.2    Warren, G.3
  • 57
    • 84878154776 scopus 로고    scopus 로고
    • Cell cycle regulation of Golgi membrane dynamics
    • [57] Tang, D., Wang, Y., Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol. 23 (2013), 296–304.
    • (2013) Trends Cell Biol. , vol.23 , pp. 296-304
    • Tang, D.1    Wang, Y.2
  • 58
    • 84964817434 scopus 로고    scopus 로고
    • Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly
    • [58] Tang, D., Yuan, H., Vielemeyer, O., Perez, F., Wang, Y., Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol. Open. 1 (2012), 1204–1214.
    • (2012) Biol. Open. , vol.1 , pp. 1204-1214
    • Tang, D.1    Yuan, H.2    Vielemeyer, O.3    Perez, F.4    Wang, Y.5
  • 59
    • 44449122449 scopus 로고    scopus 로고
    • Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay
    • [59] Tang, D., Mar, K., Warren, G., Wang, Y., Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J. Biol. Chem. 283 (2008), 6085–6094.
    • (2008) J. Biol. Chem. , vol.283 , pp. 6085-6094
    • Tang, D.1    Mar, K.2    Warren, G.3    Wang, Y.4
  • 60
    • 77953470242 scopus 로고    scopus 로고
    • The role of GRASP65 in Golgi cisternal stacking and cell cycle progression
    • [60] Tang, D., Yuan, H., Wang, Y., The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic. 11 (2010), 827–842.
    • (2010) Traffic. , vol.11 , pp. 827-842
    • Tang, D.1    Yuan, H.2    Wang, Y.3
  • 61
    • 0035167603 scopus 로고    scopus 로고
    • Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2
    • [61] Jesch, S.A., Lewis, T.S., Ahn, N.G., Linstedt, A.D., Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol. Biol. Cell. 12 (2001), 1811–1817.
    • (2001) Mol. Biol. Cell. , vol.12 , pp. 1811-1817
    • Jesch, S.A.1    Lewis, T.S.2    Ahn, N.G.3    Linstedt, A.D.4
  • 62
    • 33846813500 scopus 로고    scopus 로고
    • Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition
    • [62] Feinstein, T.N., Linstedt, A.D., Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol. Biol. Cell. 18 (2007), 594–604.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 594-604
    • Feinstein, T.N.1    Linstedt, A.D.2
  • 63
    • 47749101085 scopus 로고    scopus 로고
    • The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis
    • [63] Duran, J.M., Kinseth, M., Bossard, C., Rose, D.W., Polishchuk, R., Wu, C.C., et al. The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol. Biol. Cell. 19 (2008), 2579–2587.
    • (2008) Mol. Biol. Cell. , vol.19 , pp. 2579-2587
    • Duran, J.M.1    Kinseth, M.2    Bossard, C.3    Rose, D.W.4    Polishchuk, R.5    Wu, C.C.6
  • 64
    • 45749158566 scopus 로고    scopus 로고
    • Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport
    • e1647
    • [64] Wang, Y., Wei, J.H., Bisel, B., Tang, D., Seemann, J., Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport. PLoS ONE., 3, 2008, e1647.
    • (2008) PLoS ONE. , vol.3
    • Wang, Y.1    Wei, J.H.2    Bisel, B.3    Tang, D.4    Seemann, J.5
  • 65
    • 21844468961 scopus 로고    scopus 로고
    • The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division
    • [65] Sutterlin, C., Polishchuk, R., Pecot, M., Malhotra, V., The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol. Biol. Cell. 16 (2005), 3211–3222.
    • (2005) Mol. Biol. Cell. , vol.16 , pp. 3211-3222
    • Sutterlin, C.1    Polishchuk, R.2    Pecot, M.3    Malhotra, V.4
  • 66
    • 0032526720 scopus 로고    scopus 로고
    • Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae
    • [66] Barr, F.A., Nakamura, N., Warren, G., Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J. 17 (1998), 3258–3268.
    • (1998) EMBO J. , vol.17 , pp. 3258-3268
    • Barr, F.A.1    Nakamura, N.2    Warren, G.3
  • 67
    • 0035842903 scopus 로고    scopus 로고
    • A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic
    • [67] Short, B., Preisinger, C., Korner, R., Kopajtich, R., Byron, O., Barr, F.A., A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J. Cell Biol. 155 (2001), 877–883.
    • (2001) J. Cell Biol. , vol.155 , pp. 877-883
    • Short, B.1    Preisinger, C.2    Korner, R.3    Kopajtich, R.4    Byron, O.5    Barr, F.A.6
  • 68
    • 77952417354 scopus 로고    scopus 로고
    • Dual anchoring of the GRASP membrane tether promotes trans pairing
    • [68] Bachert, C., Linstedt, A.D., Dual anchoring of the GRASP membrane tether promotes trans pairing. J. Biol. Chem. 285 (2010), 16294–16301.
    • (2010) J. Biol. Chem. , vol.285 , pp. 16294-16301
    • Bachert, C.1    Linstedt, A.D.2
  • 69
    • 84884759069 scopus 로고    scopus 로고
    • Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins
    • [69] Feng, Y., Yu, W., Li, X., Lin, S., Zhou, Y., Hu, J., et al. Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins. J. Biol. Chem. 288 (2013), 28,418–28,427.
    • (2013) J. Biol. Chem. , vol.288 , pp. 28418-28427
    • Feng, Y.1    Yu, W.2    Li, X.3    Lin, S.4    Zhou, Y.5    Hu, J.6
  • 70
    • 84946058005 scopus 로고    scopus 로고
    • Structural basis for the interaction between the Golgi reassembly-stacking protein GRASP65 and the Golgi matrix protein GM130
    • [70] Hu, F., Shi, X., Li, B., Huang, X., Morelli, X., Shi, N., Structural basis for the interaction between the Golgi reassembly-stacking protein GRASP65 and the Golgi matrix protein GM130. J. Biol. Chem., 2015.
    • (2015) J. Biol. Chem.
    • Hu, F.1    Shi, X.2    Li, B.3    Huang, X.4    Morelli, X.5    Shi, N.6
  • 71
    • 79957985741 scopus 로고    scopus 로고
    • Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis
    • [71] Truschel, S.T., Sengupta, D., Foote, A., Heroux, A., Macbeth, M.R., Linstedt, A.D., Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis. J. Biol. Chem. 286 (2011), 20,125–20,129.
    • (2011) J. Biol. Chem. , vol.286 , pp. 20125-20129
    • Truschel, S.T.1    Sengupta, D.2    Foote, A.3    Heroux, A.4    Macbeth, M.R.5    Linstedt, A.D.6
  • 72
    • 51349095514 scopus 로고    scopus 로고
    • GRASP55 regulates Golgi ribbon formation
    • [72] Feinstein, T.N., Linstedt, A.D., GRASP55 regulates Golgi ribbon formation. Mol. Biol. Cell. 19 (2008), 2696–2707.
    • (2008) Mol. Biol. Cell. , vol.19 , pp. 2696-2707
    • Feinstein, T.N.1    Linstedt, A.D.2
  • 73
    • 84954327959 scopus 로고    scopus 로고
    • Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking
    • [73] Tang, D., Zhang, X., Huang, S., Yuan, H., Li, J., Wang, Y., Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking. Mol. Biol. Cell. 27 (2016), 137–152.
    • (2016) Mol. Biol. Cell. , vol.27 , pp. 137-152
    • Tang, D.1    Zhang, X.2    Huang, S.3    Yuan, H.4    Li, J.5    Wang, Y.6
  • 74
    • 0031975699 scopus 로고    scopus 로고
    • The Golgi apparatus: 100 years of progress and controversy
    • [74] Farquhar, M.G., Palade, G.E., The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 8 (1998), 2–10.
    • (1998) Trends Cell Biol. , vol.8 , pp. 2-10
    • Farquhar, M.G.1    Palade, G.E.2
  • 77
    • 84877777009 scopus 로고    scopus 로고
    • Regulation of cargo sorting and glycosylation by the Golgi matrix proteins GRASP55/65
    • [77] Xiang, Y., Zhang, X., Nix, D., Katoh, T., Aoki, K., Tiemeyer, M., et al. Regulation of cargo sorting and glycosylation by the Golgi matrix proteins GRASP55/65. Nat. Commun., 4, 2013, 1659.
    • (2013) Nat. Commun. , vol.4 , pp. 1659
    • Xiang, Y.1    Zhang, X.2    Nix, D.3    Katoh, T.4    Aoki, K.5    Tiemeyer, M.6
  • 78
    • 84897547912 scopus 로고    scopus 로고
    • Abeta-induced Golgi fragmentation in Alzheimer's disease enhances Abeta production
    • [78] Joshi, G., Chi, Y., Huang, Z., Wang, Y., Abeta-induced Golgi fragmentation in Alzheimer's disease enhances Abeta production. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E1230–E1239.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. E1230-E1239
    • Joshi, G.1    Chi, Y.2    Huang, Z.3    Wang, Y.4
  • 79
    • 84925583499 scopus 로고    scopus 로고
    • Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease
    • [79] Joshi, G., Wang, Y., Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease. BioEssays. 37 (2015), 240–247.
    • (2015) BioEssays. , vol.37 , pp. 240-247
    • Joshi, G.1    Wang, Y.2
  • 80
    • 84946570015 scopus 로고    scopus 로고
    • Golgi fragmentation in Alzheimer's disease
    • [80] Joshi, G., Bekier, M.E. 2nd, Wang, Y., Golgi fragmentation in Alzheimer's disease. Front. Neurosci., 9, 2015, 340.
    • (2015) Front. Neurosci. , vol.9 , pp. 340
    • Joshi, G.1    Bekier, M.E.2    Wang, Y.3
  • 81
    • 0035937505 scopus 로고    scopus 로고
    • Intracellular functions of N-linked glycans
    • [81] Helenius, A., Aebi, M., Intracellular functions of N-linked glycans. Science. 291 (2001), 2364–2369.
    • (2001) Science. , vol.291 , pp. 2364-2369
    • Helenius, A.1    Aebi, M.2
  • 82
    • 13444262282 scopus 로고    scopus 로고
    • The humanization of N-glycosylation pathways in yeast
    • [82] Wildt, S., Gerngross, T.U., The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3 (2005), 119–128.
    • (2005) Nat. Rev. Microbiol. , vol.3 , pp. 119-128
    • Wildt, S.1    Gerngross, T.U.2
  • 83
    • 33748195979 scopus 로고    scopus 로고
    • Glycosylation in cellular mechanisms of health and disease
    • [83] Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease. Cell. 126 (2006), 855–867.
    • (2006) Cell. , vol.126 , pp. 855-867
    • Ohtsubo, K.1    Marth, J.D.2
  • 84
    • 0027472941 scopus 로고
    • Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells
    • [84] Nilsson, T., Pypaert, M., Hoe, M.H., Slusarewicz, P., Berger, E.G., Warren, G., Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J. Cell Biol. 120 (1993), 5–13.
    • (1993) J. Cell Biol. , vol.120 , pp. 5-13
    • Nilsson, T.1    Pypaert, M.2    Hoe, M.H.3    Slusarewicz, P.4    Berger, E.G.5    Warren, G.6
  • 85
    • 0028905820 scopus 로고
    • Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides
    • [85] Rabouille, C., Hui, N., Hunte, F., Kieckbusch, R., Berger, E.G., Warren, G., et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108:Pt 4 (1995), 1617–1627.
    • (1995) J. Cell Sci. , vol.108 , pp. 1617-1627
    • Rabouille, C.1    Hui, N.2    Hunte, F.3    Kieckbusch, R.4    Berger, E.G.5    Warren, G.6
  • 86
    • 84891812680 scopus 로고    scopus 로고
    • Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization
    • [86] Jarvela, T., Linstedt, A.D., Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization. Mol. Biol. Cell. 25 (2014), 133–144.
    • (2014) Mol. Biol. Cell. , vol.25 , pp. 133-144
    • Jarvela, T.1    Linstedt, A.D.2
  • 88
    • 70450128390 scopus 로고    scopus 로고
    • Apical trafficking in epithelial cells: signals, clusters and motors
    • [88] Weisz, O.A., Rodriguez-Boulan, E., Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122 (2009), 4253–4266.
    • (2009) J. Cell Sci. , vol.122 , pp. 4253-4266
    • Weisz, O.A.1    Rodriguez-Boulan, E.2
  • 89
    • 45049084097 scopus 로고    scopus 로고
    • Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation
    • [89] Smith, R.D., Lupashin, V.V., Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343 (2008), 2024–2031.
    • (2008) Carbohydr. Res. , vol.343 , pp. 2024-2031
    • Smith, R.D.1    Lupashin, V.V.2
  • 90
    • 79958798009 scopus 로고    scopus 로고
    • How Golgi glycosylation meets and needs trafficking: the case of the COG complex
    • [90] Reynders, E., Foulquier, F., Annaert, W., Matthijs, G., How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology. 21 (2011), 853–863.
    • (2011) Glycobiology. , vol.21 , pp. 853-863
    • Reynders, E.1    Foulquier, F.2    Annaert, W.3    Matthijs, G.4
  • 91
    • 84862259443 scopus 로고    scopus 로고
    • Re'COG'nition at the Golgi
    • [91] Miller, V.J., Ungar, D., Re'COG'nition at the Golgi. Traffic. 13 (2012), 891–897.
    • (2012) Traffic. , vol.13 , pp. 891-897
    • Miller, V.J.1    Ungar, D.2
  • 93
    • 84867141973 scopus 로고    scopus 로고
    • Retrograde vesicle transport in the Golgi
    • [93] Cottam, N.P., Ungar, D., Retrograde vesicle transport in the Golgi. Protoplasma. 249 (2012), 943–955.
    • (2012) Protoplasma. , vol.249 , pp. 943-955
    • Cottam, N.P.1    Ungar, D.2
  • 94
    • 70349335825 scopus 로고    scopus 로고
    • Golgins and GRASPs: holding the Golgi together
    • [94] Ramirez, I.B., Lowe, M., Golgins and GRASPs: holding the Golgi together. Semin. Cell Dev. Biol. 20 (2009), 770–779.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 770-779
    • Ramirez, I.B.1    Lowe, M.2
  • 95
    • 84860311872 scopus 로고    scopus 로고
    • The golgin coiled-coil proteins of the Golgi apparatus
    • [95] Munro, S., The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb. Perspect. Biol., 3, 2011.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3
    • Munro, S.1
  • 96
    • 0035489304 scopus 로고    scopus 로고
    • The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
    • [96] Whyte, J.R., Munro, S., The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell. 1 (2001), 527–537.
    • (2001) Dev. Cell. , vol.1 , pp. 527-537
    • Whyte, J.R.1    Munro, S.2
  • 98
    • 0037071543 scopus 로고    scopus 로고
    • The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
    • [98] Suvorova, E.S., Duden, R., Lupashin, V.V., The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J. Cell Biol. 157 (2002), 631–643.
    • (2002) J. Cell Biol. , vol.157 , pp. 631-643
    • Suvorova, E.S.1    Duden, R.2    Lupashin, V.V.3
  • 99
    • 0037193464 scopus 로고    scopus 로고
    • Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function
    • [99] Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157 (2002), 405–415.
    • (2002) J. Cell Biol. , vol.157 , pp. 405-415
    • Ungar, D.1    Oka, T.2    Brittle, E.E.3    Vasile, E.4    Lupashin, V.V.5    Chatterton, J.E.6
  • 100
    • 25444486756 scopus 로고    scopus 로고
    • Subunit architecture of the conserved oligomeric Golgi complex
    • [100] Ungar, D., Oka, T., Vasile, E., Krieger, M., Hughson, F.M., Subunit architecture of the conserved oligomeric Golgi complex. J. Biol. Chem. 280 (2005), 32,729–32,735.
    • (2005) J. Biol. Chem. , vol.280 , pp. 32729-32735
    • Ungar, D.1    Oka, T.2    Vasile, E.3    Krieger, M.4    Hughson, F.M.5
  • 101
    • 34249730324 scopus 로고    scopus 로고
    • A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation
    • [101] Foulquier, F., Ungar, D., Reynders, E., Zeevaert, R., Mills, P., Garcia-Silva, M.T., et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum. Mol. Genet. 16 (2007), 717–730.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 717-730
    • Foulquier, F.1    Ungar, D.2    Reynders, E.3    Zeevaert, R.4    Mills, P.5    Garcia-Silva, M.T.6
  • 102
    • 23044502309 scopus 로고    scopus 로고
    • Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
    • [102] Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A.B., Lupashin, V.V., Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem. 280 (2005), 27,613–27,623.
    • (2005) J. Biol. Chem. , vol.280 , pp. 27613-27623
    • Fotso, P.1    Koryakina, Y.2    Pavliv, O.3    Tsiomenko, A.B.4    Lupashin, V.V.5
  • 103
    • 84924083459 scopus 로고    scopus 로고
    • Multipronged interaction of the COG complex with intracellular membranes
    • e27888
    • [103] Willett, R., Pokrovskaya, I., Kudlyk, T., Lupashin, V., Multipronged interaction of the COG complex with intracellular membranes. Cell Logist., 4, 2014, e27888.
    • (2014) Cell Logist. , vol.4
    • Willett, R.1    Pokrovskaya, I.2    Kudlyk, T.3    Lupashin, V.4
  • 104
    • 14744272136 scopus 로고    scopus 로고
    • Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells
    • [104] Zolov, S.N., Lupashin, V.V., Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J. Cell Biol. 168 (2005), 747–759.
    • (2005) J. Cell Biol. , vol.168 , pp. 747-759
    • Zolov, S.N.1    Lupashin, V.V.2
  • 105
    • 84873630243 scopus 로고    scopus 로고
    • Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF)
    • [105] Miller, V.J., Sharma, P., Kudlyk, T.A., Frost, L., Rofe, A.P., Watson, I.J., et al. Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J. Biol. Chem. 288 (2013), 4229–4240.
    • (2013) J. Biol. Chem. , vol.288 , pp. 4229-4240
    • Miller, V.J.1    Sharma, P.2    Kudlyk, T.A.3    Frost, L.4    Rofe, A.P.5    Watson, I.J.6
  • 106
    • 37249008781 scopus 로고    scopus 로고
    • Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
    • [106] Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G., Lupashin, V., Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol. 179 (2007), 1179–1192.
    • (2007) J. Cell Biol. , vol.179 , pp. 1179-1192
    • Shestakova, A.1    Suvorova, E.2    Pavliv, O.3    Khaidakova, G.4    Lupashin, V.5
  • 107
    • 80052572363 scopus 로고    scopus 로고
    • The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport
    • [107] Laufman, O., Hong, W., Lev, S., The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J. Cell Biol. 194 (2011), 459–472.
    • (2011) J. Cell Biol. , vol.194 , pp. 459-472
    • Laufman, O.1    Hong, W.2    Lev, S.3
  • 108
    • 84877912314 scopus 로고    scopus 로고
    • The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes
    • [108] Laufman, O., Hong, W., Lev, S., The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J. Cell Sci. 126 (2013), 1506–1516.
    • (2013) J. Cell Sci. , vol.126 , pp. 1506-1516
    • Laufman, O.1    Hong, W.2    Lev, S.3
  • 109
    • 84872045592 scopus 로고    scopus 로고
    • COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity
    • [109] Kudlyk, T., Willett, R., Pokrovskaya, I.D., Lupashin, V., COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic. 14 (2013), 194–204.
    • (2013) Traffic. , vol.14 , pp. 194-204
    • Kudlyk, T.1    Willett, R.2    Pokrovskaya, I.D.3    Lupashin, V.4
  • 110
    • 84887478931 scopus 로고    scopus 로고
    • The Golgi puppet master: COG complex at center stage of membrane trafficking interactions
    • [110] Willett, R., Ungar, D., Lupashin, V., The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem. Cell Biol. 140 (2013), 271–283.
    • (2013) Histochem. Cell Biol. , vol.140 , pp. 271-283
    • Willett, R.1    Ungar, D.2    Lupashin, V.3
  • 112
    • 33645131266 scopus 로고    scopus 로고
    • COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation
    • [112] Shestakova, A., Zolov, S., Lupashin, V., COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic. 7 (2006), 191–204.
    • (2006) Traffic. , vol.7 , pp. 191-204
    • Shestakova, A.1    Zolov, S.2    Lupashin, V.3
  • 113
    • 33745372525 scopus 로고    scopus 로고
    • COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins
    • [113] Steet, R., Kornfeld, S., COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol. Biol. Cell. 17 (2006), 2312–2321.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 2312-2321
    • Steet, R.1    Kornfeld, S.2
  • 114
    • 34447330452 scopus 로고    scopus 로고
    • COG8 deficiency causes new congenital disorder of glycosylation type IIh
    • [114] Kranz, C., Ng, B.G., Sun, L., Sharma, V., Eklund, E.A., Miura, Y., et al. COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum. Mol. Genet. 16 (2007), 731–741.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 731-741
    • Kranz, C.1    Ng, B.G.2    Sun, L.3    Sharma, V.4    Eklund, E.A.5    Miura, Y.6
  • 115
  • 116
    • 51649100852 scopus 로고    scopus 로고
    • ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65
    • [116] Bisel, B., Wang, Y., Wei, J.H., Xiang, Y., Tang, D., Miron-Mendoza, M., et al. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J. Cell Biol. 182 (2008), 837–843.
    • (2008) J. Cell Biol. , vol.182 , pp. 837-843
    • Bisel, B.1    Wang, Y.2    Wei, J.H.3    Xiang, Y.4    Tang, D.5    Miron-Mendoza, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.