메뉴 건너뛰기




Volumn 34, Issue 2, 2016, Pages 137-155

Biological and Bioelectrochemical Recovery of Critical and Scarce Metals

Author keywords

Bioelectrochemical systems; Biomining; Bioprecipitation; Biorecovery; Critical metals; Microbial fuel cells; Platinum group metals; Rare earth elements

Indexed keywords

BACTERIA; BIOTECHNOLOGY; CHEMICALS REMOVAL (WATER TREATMENT); COST EFFECTIVENESS; ECONOMIC GEOLOGY; METALS; MICROBIAL FUEL CELLS; MICROBIOLOGY; MICROORGANISMS; PLATINUM; RARE EARTH ELEMENTS; RARE EARTHS; RECOVERY; WASTEWATER TREATMENT;

EID: 84961085643     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.11.003     Document Type: Review
Times cited : (246)

References (93)
  • 1
    • 77749261551 scopus 로고    scopus 로고
    • Metals, minerals and microbes: geomicrobiology and bioremediation
    • Gadd M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 2010, 156:603-643.
    • (2010) Microbiology , vol.156 , pp. 603-643
    • Gadd, M.1
  • 2
    • 78650520448 scopus 로고    scopus 로고
    • Removal of heavy metal ions from wastewaters: a review
    • Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92:407-418.
    • (2011) J. Environ. Manage. , vol.92 , pp. 407-418
    • Fu, F.1    Wang, Q.2
  • 3
    • 84961209831 scopus 로고
    • (Appendix A to 40 CFR Part 423)
    • US Environmental Protection Agency (1976-2015) Priority Pollutant List (Appendix A to 40 CFR Part 423) (). http://water.epa.gov/scitech/methods/cwa/pollutants.cfm.
    • (1976) Priority Pollutant List
  • 4
    • 84887058369 scopus 로고    scopus 로고
    • Metals for a low-carbon society
    • Vidal O., et al. Metals for a low-carbon society. Nat. Geosci. 2013, 6:894-896.
    • (2013) Nat. Geosci. , vol.6 , pp. 894-896
    • Vidal, O.1
  • 5
    • 84939535117 scopus 로고    scopus 로고
    • Mining critical metals and elements from seawater: opportunities and challenges
    • Diallo M.S., et al. Mining critical metals and elements from seawater: opportunities and challenges. Environ. Sci. Technol. 2015, 49:9390-9399.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 9390-9399
    • Diallo, M.S.1
  • 6
    • 84912102329 scopus 로고    scopus 로고
    • Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives
    • Hennebel T., et al. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol. 2015, 32:121-127.
    • (2015) New Biotechnol. , vol.32 , pp. 121-127
    • Hennebel, T.1
  • 7
    • 84928234161 scopus 로고    scopus 로고
    • Recovery of critical metals using biometallurgy
    • Zhuang W.Q., et al. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015, 33:327-335.
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 327-335
    • Zhuang, W.Q.1
  • 8
    • 84887096222 scopus 로고    scopus 로고
    • Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery
    • Erüst C., et al. Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J. Chem. Technol. Biotechnol. 2013, 88:2115-2132.
    • (2013) J. Chem. Technol. Biotechnol. , vol.88 , pp. 2115-2132
    • Erüst, C.1
  • 9
    • 85102092675 scopus 로고    scopus 로고
    • Biometallurgical recovery of metals from waste electrical and electronic equipment: a review
    • Ilyas S., Lee J.C. Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. Chem. Bioeng. Rev. 2014, 1:148-169.
    • (2014) Chem. Bioeng. Rev. , vol.1 , pp. 148-169
    • Ilyas, S.1    Lee, J.C.2
  • 11
    • 84899855496 scopus 로고    scopus 로고
    • Biomining-biotechnologies for extracting and recovering metals from ores and waste materials
    • Johnson D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30:24-31.
    • (2014) Curr. Opin. Biotechnol. , vol.30 , pp. 24-31
    • Johnson, D.B.1
  • 12
    • 84929506585 scopus 로고    scopus 로고
    • Selenium biomineralization for biotechnological applications
    • Nancharaiah Y.V., Lens P.N. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015, 33:323-330.
    • (2015) Trends Biotechnol. , vol.33 , pp. 323-330
    • Nancharaiah, Y.V.1    Lens, P.N.2
  • 13
    • 84919624147 scopus 로고    scopus 로고
    • Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples
    • Williamson A.L., et al. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples. J. Environ. Radioactiv. 2014, 138:308-314.
    • (2014) J. Environ. Radioactiv. , vol.138 , pp. 308-314
    • Williamson, A.L.1
  • 14
    • 84928893885 scopus 로고    scopus 로고
    • Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
    • Campbell K.M., et al. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Appl. Geochem. 2015, 57:206-235.
    • (2015) Appl. Geochem. , vol.57 , pp. 206-235
    • Campbell, K.M.1
  • 15
    • 84899860951 scopus 로고    scopus 로고
    • A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores
    • Johnson D.B., et al. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores. Minerals 2013, 3:49-58.
    • (2013) Minerals , vol.3 , pp. 49-58
    • Johnson, D.B.1
  • 16
    • 84927127523 scopus 로고    scopus 로고
    • Biomining in reverse gear: using bacteria to extract metals from oxidised ores
    • Johnson D.B., du Plesis C.A. Biomining in reverse gear: using bacteria to extract metals from oxidised ores. Miner. Eng. 2015, 75:2-5.
    • (2015) Miner. Eng. , vol.75 , pp. 2-5
    • Johnson, D.B.1    du Plesis, C.A.2
  • 17
    • 84930651189 scopus 로고    scopus 로고
    • Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions by Acidothiobacillus species
    • Marrero J., et al. Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions by Acidothiobacillus species. Environ. Sci. Technol. 2015, 49:6674-6682.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 6674-6682
    • Marrero, J.1
  • 18
    • 84890847211 scopus 로고    scopus 로고
    • The role of microorganisms in gold processing and recovery - a review
    • Kaksonen A.H., et al. The role of microorganisms in gold processing and recovery - a review. Hydrometallurgy 2014, 142:70-83.
    • (2014) Hydrometallurgy , vol.142 , pp. 70-83
    • Kaksonen, A.H.1
  • 19
    • 84907803899 scopus 로고    scopus 로고
    • Bioelectrochemical metal recovery from wastewater: a review
    • Wang H., Ren Z.J. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014, 66:219-232.
    • (2014) Water Res. , vol.66 , pp. 219-232
    • Wang, H.1    Ren, Z.J.2
  • 20
    • 84923356554 scopus 로고    scopus 로고
    • Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide
    • Westerhoff P., et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide. Environ. Sci. Technol. 2015, 49:9479-9488.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 9479-9488
    • Westerhoff, P.1
  • 21
    • 84928974398 scopus 로고    scopus 로고
    • Direct leach approaches to platinum group metal (PGM) ores and concentrates: a review
    • Mpinga C.N., et al. Direct leach approaches to platinum group metal (PGM) ores and concentrates: a review. Miner. Eng. 2015, 78:93-113.
    • (2015) Miner. Eng. , vol.78 , pp. 93-113
    • Mpinga, C.N.1
  • 22
    • 84902324924 scopus 로고    scopus 로고
    • Separation of palladium from high level liquid waste - a review
    • Ruhela R., et al. Separation of palladium from high level liquid waste - a review. RSC Adv. 2014, 4:24344-24350.
    • (2014) RSC Adv. , vol.4 , pp. 24344-24350
    • Ruhela, R.1
  • 23
    • 80053422701 scopus 로고    scopus 로고
    • Bio-palladium: from metal recovery to catalytic applications
    • De Corte S., et al. Bio-palladium: from metal recovery to catalytic applications. Microb. Biotechnol. 2012, 5:5-17.
    • (2012) Microb. Biotechnol. , vol.5 , pp. 5-17
    • De Corte, S.1
  • 24
    • 84906707029 scopus 로고    scopus 로고
    • Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation
    • Suja E., et al. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation. Water Res. 2014, 65:395-401.
    • (2014) Water Res. , vol.65 , pp. 395-401
    • Suja, E.1
  • 25
    • 84928138223 scopus 로고    scopus 로고
    • In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation
    • Quan X., et al. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res. 2015, 78:74-83.
    • (2015) Water Res. , vol.78 , pp. 74-83
    • Quan, X.1
  • 26
    • 84960798413 scopus 로고    scopus 로고
    • Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor
    • Published online May 19, 2015
    • Pat-Espadas A., et al. Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor. J. Chem. Technol. Biotechnol. 2015, Published online May 19, 2015. 10.1002/jctb.4708.
    • (2015) J. Chem. Technol. Biotechnol.
    • Pat-Espadas, A.1
  • 27
    • 84942456244 scopus 로고    scopus 로고
    • One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction
    • Yong P., et al. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction. Biotechnol. Lett. 2015, 37:2181-2191.
    • (2015) Biotechnol. Lett. , vol.37 , pp. 2181-2191
    • Yong, P.1
  • 28
    • 84862691676 scopus 로고    scopus 로고
    • Non-enzymatic palladium recovery on microbial and synthetic surfaces
    • Rotaru A.E., et al. Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol. Bioeng. 2012, 109:1889-1897.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 1889-1897
    • Rotaru, A.E.1
  • 29
    • 14344250862 scopus 로고    scopus 로고
    • Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls
    • De Windt W., et al. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 2005, 7:314-325.
    • (2005) Environ. Microbiol. , vol.7 , pp. 314-325
    • De Windt, W.1
  • 30
    • 0032213601 scopus 로고    scopus 로고
    • Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria
    • LIoyd J.R., et al. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microb. 1998, 64:4607-4609.
    • (1998) Appl. Environ. Microb. , vol.64 , pp. 4607-4609
    • LIoyd, J.R.1
  • 31
    • 44349098881 scopus 로고    scopus 로고
    • Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains
    • Mikheenko I.P., et al. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl. Environ. Microbiol. 2008, 74:6144-6146.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 6144-6146
    • Mikheenko, I.P.1
  • 32
    • 78149270902 scopus 로고    scopus 로고
    • Formation of palladium(0) nanoparticles at microbial surfaces
    • Bunge M., et al. Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol. Bioeng. 2010, 107:206-215.
    • (2010) Biotechnol. Bioeng. , vol.107 , pp. 206-215
    • Bunge, M.1
  • 33
    • 77957363075 scopus 로고    scopus 로고
    • Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate
    • Chidambaram D., et al. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ. Sci. Technol. 2010, 44:7635-7640.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 7635-7640
    • Chidambaram, D.1
  • 34
    • 0242584856 scopus 로고    scopus 로고
    • A novel electrobiotechnology for the recovery of precious metals from spent automatic catalysts
    • Yong P., et al. A novel electrobiotechnology for the recovery of precious metals from spent automatic catalysts. Environ. Technol. 2003, 24:289-297.
    • (2003) Environ. Technol. , vol.24 , pp. 289-297
    • Yong, P.1
  • 35
    • 84886386563 scopus 로고    scopus 로고
    • Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 'green' synthesis of fine chemicals and pharmaceuticals
    • Desplanche K., et al. Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 'green' synthesis of fine chemicals and pharmaceuticals. Appl. Catal. B: Environ. 2014, 147:651-665.
    • (2014) Appl. Catal. B: Environ. , vol.147 , pp. 651-665
    • Desplanche, K.1
  • 36
    • 84940953524 scopus 로고    scopus 로고
    • Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20
    • Capeness M.J., et al. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnol. 2015, 32:727-731.
    • (2015) New Biotechnol. , vol.32 , pp. 727-731
    • Capeness, M.J.1
  • 37
    • 33748567154 scopus 로고    scopus 로고
    • Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans
    • Creamer N.J., et al. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol. Lett. 2006, 28:1475-1484.
    • (2006) Biotechnol. Lett. , vol.28 , pp. 1475-1484
    • Creamer, N.J.1
  • 38
    • 84869888437 scopus 로고    scopus 로고
    • Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers
    • Kwak I.S., et al. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour. Technol. 2006, 128:30-35.
    • (2006) Bioresour. Technol. , vol.128 , pp. 30-35
    • Kwak, I.S.1
  • 39
    • 84899966352 scopus 로고    scopus 로고
    • The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution
    • Won S.W., et al. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour. Technol. 2014, 160:93-97.
    • (2014) Bioresour. Technol. , vol.160 , pp. 93-97
    • Won, S.W.1
  • 40
    • 84929293840 scopus 로고    scopus 로고
    • Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review
    • Binnemans K., et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J. Clean. Prod. 2015, 99:17-38.
    • (2015) J. Clean. Prod. , vol.99 , pp. 17-38
    • Binnemans, K.1
  • 42
    • 84927800894 scopus 로고    scopus 로고
    • A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium
    • Horiike T., Yamashita M. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl. Environ. Microbiol. 2015, 81:3062-3068.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 3062-3068
    • Horiike, T.1    Yamashita, M.2
  • 43
    • 84925245328 scopus 로고    scopus 로고
    • Ecology and biotechnology of selenium-respiring bacteria
    • Nancharaiah Y.V., Lens P.N. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 2015, 79:61-80.
    • (2015) Microbiol. Mol. Biol. Rev. , vol.79 , pp. 61-80
    • Nancharaiah, Y.V.1    Lens, P.N.2
  • 44
    • 84864921713 scopus 로고    scopus 로고
    • Microbial processing of tellurium as a tool in biotechnology
    • Turner R.J., et al. Microbial processing of tellurium as a tool in biotechnology. Biotechnol. Adv. 2012, 30:954-963.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 954-963
    • Turner, R.J.1
  • 45
    • 84882278150 scopus 로고    scopus 로고
    • Data-driven review of thermoelectric materials: performance and resource considerations
    • Gaultois M.W., et al. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater 2013, 25:2911-2920.
    • (2013) Chem. Mater , vol.25 , pp. 2911-2920
    • Gaultois, M.W.1
  • 46
    • 84867137101 scopus 로고    scopus 로고
    • Future recycling flows of tellurium from cadmium telluride photovoltaic waste
    • Marwede M., Reller A. Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resour. Conserv. Recy. 2012, 69:35-49.
    • (2012) Resour. Conserv. Recy. , vol.69 , pp. 35-49
    • Marwede, M.1    Reller, A.2
  • 47
    • 0141938362 scopus 로고    scopus 로고
    • Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application
    • Rajwade J.M., Paknikar K.M. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 2003, 71:243-248.
    • (2003) Hydrometallurgy , vol.71 , pp. 243-248
    • Rajwade, J.M.1    Paknikar, K.M.2
  • 48
    • 84907976985 scopus 로고    scopus 로고
    • Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3
    • Bonificio W.D., Clarke D.R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J. Appl. Microbiol. 2014, 117:1293-1304.
    • (2014) J. Appl. Microbiol. , vol.117 , pp. 1293-1304
    • Bonificio, W.D.1    Clarke, D.R.2
  • 49
    • 33748668028 scopus 로고    scopus 로고
    • Aerobic granular biomass: a novel biomaterial for efficient uranium removal
    • Nancharaiah Y.V., et al. Aerobic granular biomass: a novel biomaterial for efficient uranium removal. Curr. Sci. INDIA 2006, 91:503-509.
    • (2006) Curr. Sci. INDIA , vol.91 , pp. 503-509
    • Nancharaiah, Y.V.1
  • 51
    • 84888423117 scopus 로고    scopus 로고
    • The biogeochemistry and bioremediation of uranium and other priority radionuclides
    • Newsome L., et al. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363:164-184.
    • (2014) Chem. Geol. , vol.363 , pp. 164-184
    • Newsome, L.1
  • 52
    • 77957770411 scopus 로고    scopus 로고
    • Biorecovery of uranium from aqueous solutions at the expense of phytic acid
    • Paterson-Beedle M., et al. Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy 2010, 104:524-528.
    • (2010) Hydrometallurgy , vol.104 , pp. 524-528
    • Paterson-Beedle, M.1
  • 53
    • 84885915198 scopus 로고    scopus 로고
    • Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans
    • Kulkarni S., et al. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J. Hazard. Mater. 2013, 262:853-861.
    • (2013) J. Hazard. Mater. , vol.262 , pp. 853-861
    • Kulkarni, S.1
  • 55
    • 84906687075 scopus 로고    scopus 로고
    • Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advances
    • Venkata Mohan S., et al. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advances. Renew. Sust. Energ. Rev. 2014, 40:779-797.
    • (2014) Renew. Sust. Energ. Rev. , vol.40 , pp. 779-797
    • Venkata Mohan, S.1
  • 56
    • 84922198482 scopus 로고    scopus 로고
    • Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications
    • Venkata Mohan S., et al. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour. Technol. 2014, 165:355-364.
    • (2014) Bioresour. Technol. , vol.165 , pp. 355-364
    • Venkata Mohan, S.1
  • 57
    • 84930088795 scopus 로고    scopus 로고
    • A logical data representation framework for electricity-driven bioproduction processes
    • Patil S.A., et al. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 2015, 33:736-744.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 736-744
    • Patil, S.A.1
  • 58
    • 84936989704 scopus 로고    scopus 로고
    • 2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis
    • 2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J. CO2 Util. 2015, 10:78-87.
    • (2015) J. CO2 Util. , vol.10 , pp. 78-87
    • Annie Modestra, J.1
  • 59
    • 84892486205 scopus 로고    scopus 로고
    • Nutrient removal and recovery in bioelectrochemical systems: a review
    • Kelly P.T., He Z. Nutrient removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 2014, 153:351-360.
    • (2014) Bioresour. Technol. , vol.153 , pp. 351-360
    • Kelly, P.T.1    He, Z.2
  • 60
    • 84945442633 scopus 로고    scopus 로고
    • Metals removal and recovery in bioelectrochemical systems: a review
    • Nancharaiah Y.V., et al. Metals removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 2015, 195:102-114.
    • (2015) Bioresour. Technol. , vol.195 , pp. 102-114
    • Nancharaiah, Y.V.1
  • 61
    • 77953507926 scopus 로고    scopus 로고
    • Bioelectrochemical perchlorate reduction in a microbial fuel cell
    • Butler C.S., et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 2010, 44:4685-4691.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 4685-4691
    • Butler, C.S.1
  • 62
    • 84939996698 scopus 로고    scopus 로고
    • Reductive behaviour of acid azo dye based wastewater: biocatalytic activity in conjunction with enzymatic and bio-electrocatalytic evaluation
    • Sreelatha S., et al. Reductive behaviour of acid azo dye based wastewater: biocatalytic activity in conjunction with enzymatic and bio-electrocatalytic evaluation. Bioresour. Technol. 2015, 188:2-8.
    • (2015) Bioresour. Technol. , vol.188 , pp. 2-8
    • Sreelatha, S.1
  • 63
    • 84870526742 scopus 로고    scopus 로고
    • Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
    • Huang L., et al. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour. Technol. 2013, 128:539-546.
    • (2013) Bioresour. Technol. , vol.128 , pp. 539-546
    • Huang, L.1
  • 64
    • 84883428614 scopus 로고    scopus 로고
    • Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells
    • Liu Y., et al. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. J. Hazard. Mater. 2013, 262:1-8.
    • (2013) J. Hazard. Mater. , vol.262 , pp. 1-8
    • Liu, Y.1
  • 65
    • 84896522153 scopus 로고    scopus 로고
    • Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems
    • Huang L., et al. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. J. Power Sources 2014, 259:54-64.
    • (2014) J. Power Sources , vol.259 , pp. 54-64
    • Huang, L.1
  • 66
    • 84874707527 scopus 로고    scopus 로고
    • The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell
    • Choi C., Hu N. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour. Technol. 2013, 133:589-598.
    • (2013) Bioresour. Technol. , vol.133 , pp. 589-598
    • Choi, C.1    Hu, N.2
  • 67
    • 84856583214 scopus 로고    scopus 로고
    • Recovery of silver from wastewater coupled with power generation using a microbial fuel cell
    • Choi C., Cui Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2012, 107:522-525.
    • (2012) Bioresour. Technol. , vol.107 , pp. 522-525
    • Choi, C.1    Cui, Y.2
  • 68
    • 84884208184 scopus 로고    scopus 로고
    • Electricity production from a bio-electrochemical cell for silver recovery in alkaline media
    • Wang Y-H., et al. Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl. Energ. 2013, 112:1337-1341.
    • (2013) Appl. Energ. , vol.112 , pp. 1337-1341
    • Wang, Y.-H.1
  • 69
    • 84862795873 scopus 로고    scopus 로고
    • Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors
    • Tao H-C., et al. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour. Technol. 2012, 111:92-97.
    • (2012) Bioresour. Technol. , vol.111 , pp. 92-97
    • Tao, H.-C.1
  • 70
    • 69849103522 scopus 로고    scopus 로고
    • Removal of selenite from wastewater using microbial fuel cells
    • Catal T., et al. Removal of selenite from wastewater using microbial fuel cells. Biotechnol. Lett. 2009, 31:1211-1216.
    • (2009) Biotechnol. Lett. , vol.31 , pp. 1211-1216
    • Catal, T.1
  • 71
    • 84907528504 scopus 로고    scopus 로고
    • Biomining: metal recovery from ores with microorganisms
    • Schippers A., et al. Biomining: metal recovery from ores with microorganisms. Adv. Biochem. Eng. Biotechnol. 2014, 141:1-47.
    • (2014) Adv. Biochem. Eng. Biotechnol. , vol.141 , pp. 1-47
    • Schippers, A.1
  • 72
    • 84879964410 scopus 로고    scopus 로고
    • Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects
    • Prabhu S., Poulose E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2:32.
    • (2012) Int. Nano Lett. , vol.2 , pp. 32
    • Prabhu, S.1    Poulose, E.K.2
  • 73
    • 41249091665 scopus 로고    scopus 로고
    • Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans
    • Deplanche K., Macaskie L.E. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol. Bioeng. 2008, 99:1055-1064.
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 1055-1064
    • Deplanche, K.1    Macaskie, L.E.2
  • 74
    • 84901632971 scopus 로고    scopus 로고
    • Microbial synthesis of gold nanoparticles: current status and future prospects
    • Shedbalkar U., et al. Microbial synthesis of gold nanoparticles: current status and future prospects. Adv. Colloid Inter. Sci. 2014, 209:40-48.
    • (2014) Adv. Colloid Inter. Sci. , vol.209 , pp. 40-48
    • Shedbalkar, U.1
  • 75
    • 84863566915 scopus 로고    scopus 로고
    • Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry
    • Deplanche K., et al. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J. R. Soc. Interface 2012, 9:1705-1712.
    • (2012) J. R. Soc. Interface , vol.9 , pp. 1705-1712
    • Deplanche, K.1
  • 76
    • 81455154474 scopus 로고    scopus 로고
    • Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles
    • Hosseinkhani B., et al. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol. Bioeng. 2012, 109:45-52.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 45-52
    • Hosseinkhani, B.1
  • 77
    • 33847761835 scopus 로고    scopus 로고
    • From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst
    • Yong P., et al. From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnol. Lett. 2007, 29:539-544.
    • (2007) Biotechnol. Lett. , vol.29 , pp. 539-544
    • Yong, P.1
  • 78
    • 84897669375 scopus 로고    scopus 로고
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell. J. Hazard. Mater. 2014, 270:153-159.
    • (2014) J. Hazard. Mater. , vol.270 , pp. 153-159
    • Luo, H.1
  • 79
    • 80051998368 scopus 로고    scopus 로고
    • A bacterial process for selenium nanosphere assembly
    • Debieux C.M., et al. A bacterial process for selenium nanosphere assembly. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13480-13485.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 13480-13485
    • Debieux, C.M.1
  • 80
    • 84870201419 scopus 로고    scopus 로고
    • Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis
    • Butler C.S., et al. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem. Soc. Trans. 2012, 40:1239-1243.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1239-1243
    • Butler, C.S.1
  • 81
    • 84931264121 scopus 로고    scopus 로고
    • Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms
    • Zonaro E., et al. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol. 2015, 6:584.
    • (2015) Front. Microbiol. , vol.6 , pp. 584
    • Zonaro, E.1
  • 82
    • 79953175285 scopus 로고    scopus 로고
    • MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo
    • Tanaka M., et al. MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J. Biol. Chem. 2011, 286:6386-6392.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6386-6392
    • Tanaka, M.1
  • 83
    • 84930729067 scopus 로고    scopus 로고
    • Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens
    • Byrne J.M., et al. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. J. R. Soc. Interface 2015, 12:20150240.
    • (2015) J. R. Soc. Interface , vol.12 , pp. 20150240
    • Byrne, J.M.1
  • 84
    • 84925257148 scopus 로고    scopus 로고
    • Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell
    • Gangadharan P., Nambi I.M. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Water Sci. Technol. 2015, 71:353-358.
    • (2015) Water Sci. Technol. , vol.71 , pp. 353-358
    • Gangadharan, P.1    Nambi, I.M.2
  • 85
    • 54949100705 scopus 로고    scopus 로고
    • 6+ using microbial fuel cell
    • 6+ using microbial fuel cell. Process. Biochem. 2008, 43:1352-1358.
    • (2008) Process. Biochem. , vol.43 , pp. 1352-1358
    • Li, Z.J.1
  • 86
    • 84935887094 scopus 로고    scopus 로고
    • High rate copper and energy recovery in microbial fuel cells
    • Rodenas Motos P., et al. High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 2015, 6:527.
    • (2015) Front. Microbiol. , vol.6 , pp. 527
    • Rodenas Motos, P.1
  • 87
    • 84938263550 scopus 로고    scopus 로고
    • Copper recovery from polluted soils using acidic washing and bioelectrochemical systems
    • Fedje K.K., et al. Copper recovery from polluted soils using acidic washing and bioelectrochemical systems. Metals 2015, 5:1328-1348.
    • (2015) Metals , vol.5 , pp. 1328-1348
    • Fedje, K.K.1
  • 88
    • 79955016287 scopus 로고    scopus 로고
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2011, 102:6304-6307.
    • (2011) Bioresour. Technol. , vol.102 , pp. 6304-6307
    • Wang, Z.1
  • 89
    • 84865550608 scopus 로고    scopus 로고
    • Nickel ion removal from wastewater using the microbial electrolysis cell
    • Qin B., et al. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour. Technol. 2012, 121:458-461.
    • (2012) Bioresour. Technol. , vol.121 , pp. 458-461
    • Qin, B.1
  • 90
    • 84895073088 scopus 로고    scopus 로고
    • Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
    • Abourached C., et al. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014, 51:228-233.
    • (2014) Water Res. , vol.51 , pp. 228-233
    • Abourached, C.1
  • 91
    • 84856378316 scopus 로고    scopus 로고
    • Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology
    • Zhang B., et al. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources 2012, 204:34-39.
    • (2012) J. Power Sources , vol.204 , pp. 34-39
    • Zhang, B.1
  • 92
    • 84865746608 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
    • Modin O., et al. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J. Hazard. Mater. 2012, 235-236:291-297.
    • (2012) J. Hazard. Mater. , pp. 291-297
    • Modin, O.1
  • 93
    • 84908192556 scopus 로고    scopus 로고
    • Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells
    • Zhang Y., et al. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. J. Power Sources 2015, 273:1103-1113.
    • (2015) J. Power Sources , vol.273 , pp. 1103-1113
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.