-
1
-
-
77749261551
-
Metals, minerals and microbes: geomicrobiology and bioremediation
-
Gadd M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 2010, 156:603-643.
-
(2010)
Microbiology
, vol.156
, pp. 603-643
-
-
Gadd, M.1
-
2
-
-
78650520448
-
Removal of heavy metal ions from wastewaters: a review
-
Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92:407-418.
-
(2011)
J. Environ. Manage.
, vol.92
, pp. 407-418
-
-
Fu, F.1
Wang, Q.2
-
3
-
-
84961209831
-
-
(Appendix A to 40 CFR Part 423)
-
US Environmental Protection Agency (1976-2015) Priority Pollutant List (Appendix A to 40 CFR Part 423) (). http://water.epa.gov/scitech/methods/cwa/pollutants.cfm.
-
(1976)
Priority Pollutant List
-
-
-
4
-
-
84887058369
-
Metals for a low-carbon society
-
Vidal O., et al. Metals for a low-carbon society. Nat. Geosci. 2013, 6:894-896.
-
(2013)
Nat. Geosci.
, vol.6
, pp. 894-896
-
-
Vidal, O.1
-
5
-
-
84939535117
-
Mining critical metals and elements from seawater: opportunities and challenges
-
Diallo M.S., et al. Mining critical metals and elements from seawater: opportunities and challenges. Environ. Sci. Technol. 2015, 49:9390-9399.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 9390-9399
-
-
Diallo, M.S.1
-
6
-
-
84912102329
-
Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives
-
Hennebel T., et al. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol. 2015, 32:121-127.
-
(2015)
New Biotechnol.
, vol.32
, pp. 121-127
-
-
Hennebel, T.1
-
7
-
-
84928234161
-
Recovery of critical metals using biometallurgy
-
Zhuang W.Q., et al. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015, 33:327-335.
-
(2015)
Curr. Opin. Biotechnol.
, vol.33
, pp. 327-335
-
-
Zhuang, W.Q.1
-
8
-
-
84887096222
-
Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery
-
Erüst C., et al. Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J. Chem. Technol. Biotechnol. 2013, 88:2115-2132.
-
(2013)
J. Chem. Technol. Biotechnol.
, vol.88
, pp. 2115-2132
-
-
Erüst, C.1
-
9
-
-
85102092675
-
Biometallurgical recovery of metals from waste electrical and electronic equipment: a review
-
Ilyas S., Lee J.C. Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. Chem. Bioeng. Rev. 2014, 1:148-169.
-
(2014)
Chem. Bioeng. Rev.
, vol.1
, pp. 148-169
-
-
Ilyas, S.1
Lee, J.C.2
-
11
-
-
84899855496
-
Biomining-biotechnologies for extracting and recovering metals from ores and waste materials
-
Johnson D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30:24-31.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 24-31
-
-
Johnson, D.B.1
-
12
-
-
84929506585
-
Selenium biomineralization for biotechnological applications
-
Nancharaiah Y.V., Lens P.N. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015, 33:323-330.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 323-330
-
-
Nancharaiah, Y.V.1
Lens, P.N.2
-
13
-
-
84919624147
-
Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples
-
Williamson A.L., et al. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples. J. Environ. Radioactiv. 2014, 138:308-314.
-
(2014)
J. Environ. Radioactiv.
, vol.138
, pp. 308-314
-
-
Williamson, A.L.1
-
14
-
-
84928893885
-
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
-
Campbell K.M., et al. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Appl. Geochem. 2015, 57:206-235.
-
(2015)
Appl. Geochem.
, vol.57
, pp. 206-235
-
-
Campbell, K.M.1
-
15
-
-
84899860951
-
A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores
-
Johnson D.B., et al. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores. Minerals 2013, 3:49-58.
-
(2013)
Minerals
, vol.3
, pp. 49-58
-
-
Johnson, D.B.1
-
16
-
-
84927127523
-
Biomining in reverse gear: using bacteria to extract metals from oxidised ores
-
Johnson D.B., du Plesis C.A. Biomining in reverse gear: using bacteria to extract metals from oxidised ores. Miner. Eng. 2015, 75:2-5.
-
(2015)
Miner. Eng.
, vol.75
, pp. 2-5
-
-
Johnson, D.B.1
du Plesis, C.A.2
-
17
-
-
84930651189
-
Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions by Acidothiobacillus species
-
Marrero J., et al. Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions by Acidothiobacillus species. Environ. Sci. Technol. 2015, 49:6674-6682.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 6674-6682
-
-
Marrero, J.1
-
18
-
-
84890847211
-
The role of microorganisms in gold processing and recovery - a review
-
Kaksonen A.H., et al. The role of microorganisms in gold processing and recovery - a review. Hydrometallurgy 2014, 142:70-83.
-
(2014)
Hydrometallurgy
, vol.142
, pp. 70-83
-
-
Kaksonen, A.H.1
-
19
-
-
84907803899
-
Bioelectrochemical metal recovery from wastewater: a review
-
Wang H., Ren Z.J. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014, 66:219-232.
-
(2014)
Water Res.
, vol.66
, pp. 219-232
-
-
Wang, H.1
Ren, Z.J.2
-
20
-
-
84923356554
-
Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide
-
Westerhoff P., et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide. Environ. Sci. Technol. 2015, 49:9479-9488.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 9479-9488
-
-
Westerhoff, P.1
-
21
-
-
84928974398
-
Direct leach approaches to platinum group metal (PGM) ores and concentrates: a review
-
Mpinga C.N., et al. Direct leach approaches to platinum group metal (PGM) ores and concentrates: a review. Miner. Eng. 2015, 78:93-113.
-
(2015)
Miner. Eng.
, vol.78
, pp. 93-113
-
-
Mpinga, C.N.1
-
22
-
-
84902324924
-
Separation of palladium from high level liquid waste - a review
-
Ruhela R., et al. Separation of palladium from high level liquid waste - a review. RSC Adv. 2014, 4:24344-24350.
-
(2014)
RSC Adv.
, vol.4
, pp. 24344-24350
-
-
Ruhela, R.1
-
23
-
-
80053422701
-
Bio-palladium: from metal recovery to catalytic applications
-
De Corte S., et al. Bio-palladium: from metal recovery to catalytic applications. Microb. Biotechnol. 2012, 5:5-17.
-
(2012)
Microb. Biotechnol.
, vol.5
, pp. 5-17
-
-
De Corte, S.1
-
24
-
-
84906707029
-
Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation
-
Suja E., et al. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation. Water Res. 2014, 65:395-401.
-
(2014)
Water Res.
, vol.65
, pp. 395-401
-
-
Suja, E.1
-
25
-
-
84928138223
-
In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation
-
Quan X., et al. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res. 2015, 78:74-83.
-
(2015)
Water Res.
, vol.78
, pp. 74-83
-
-
Quan, X.1
-
26
-
-
84960798413
-
Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor
-
Published online May 19, 2015
-
Pat-Espadas A., et al. Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor. J. Chem. Technol. Biotechnol. 2015, Published online May 19, 2015. 10.1002/jctb.4708.
-
(2015)
J. Chem. Technol. Biotechnol.
-
-
Pat-Espadas, A.1
-
27
-
-
84942456244
-
One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction
-
Yong P., et al. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction. Biotechnol. Lett. 2015, 37:2181-2191.
-
(2015)
Biotechnol. Lett.
, vol.37
, pp. 2181-2191
-
-
Yong, P.1
-
28
-
-
84862691676
-
Non-enzymatic palladium recovery on microbial and synthetic surfaces
-
Rotaru A.E., et al. Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol. Bioeng. 2012, 109:1889-1897.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 1889-1897
-
-
Rotaru, A.E.1
-
29
-
-
14344250862
-
Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls
-
De Windt W., et al. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 2005, 7:314-325.
-
(2005)
Environ. Microbiol.
, vol.7
, pp. 314-325
-
-
De Windt, W.1
-
30
-
-
0032213601
-
Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria
-
LIoyd J.R., et al. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microb. 1998, 64:4607-4609.
-
(1998)
Appl. Environ. Microb.
, vol.64
, pp. 4607-4609
-
-
LIoyd, J.R.1
-
31
-
-
44349098881
-
Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains
-
Mikheenko I.P., et al. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl. Environ. Microbiol. 2008, 74:6144-6146.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 6144-6146
-
-
Mikheenko, I.P.1
-
32
-
-
78149270902
-
Formation of palladium(0) nanoparticles at microbial surfaces
-
Bunge M., et al. Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol. Bioeng. 2010, 107:206-215.
-
(2010)
Biotechnol. Bioeng.
, vol.107
, pp. 206-215
-
-
Bunge, M.1
-
33
-
-
77957363075
-
Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate
-
Chidambaram D., et al. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ. Sci. Technol. 2010, 44:7635-7640.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 7635-7640
-
-
Chidambaram, D.1
-
34
-
-
0242584856
-
A novel electrobiotechnology for the recovery of precious metals from spent automatic catalysts
-
Yong P., et al. A novel electrobiotechnology for the recovery of precious metals from spent automatic catalysts. Environ. Technol. 2003, 24:289-297.
-
(2003)
Environ. Technol.
, vol.24
, pp. 289-297
-
-
Yong, P.1
-
35
-
-
84886386563
-
Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 'green' synthesis of fine chemicals and pharmaceuticals
-
Desplanche K., et al. Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 'green' synthesis of fine chemicals and pharmaceuticals. Appl. Catal. B: Environ. 2014, 147:651-665.
-
(2014)
Appl. Catal. B: Environ.
, vol.147
, pp. 651-665
-
-
Desplanche, K.1
-
36
-
-
84940953524
-
Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20
-
Capeness M.J., et al. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnol. 2015, 32:727-731.
-
(2015)
New Biotechnol.
, vol.32
, pp. 727-731
-
-
Capeness, M.J.1
-
37
-
-
33748567154
-
Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans
-
Creamer N.J., et al. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol. Lett. 2006, 28:1475-1484.
-
(2006)
Biotechnol. Lett.
, vol.28
, pp. 1475-1484
-
-
Creamer, N.J.1
-
38
-
-
84869888437
-
Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers
-
Kwak I.S., et al. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour. Technol. 2006, 128:30-35.
-
(2006)
Bioresour. Technol.
, vol.128
, pp. 30-35
-
-
Kwak, I.S.1
-
39
-
-
84899966352
-
The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution
-
Won S.W., et al. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour. Technol. 2014, 160:93-97.
-
(2014)
Bioresour. Technol.
, vol.160
, pp. 93-97
-
-
Won, S.W.1
-
40
-
-
84929293840
-
Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review
-
Binnemans K., et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J. Clean. Prod. 2015, 99:17-38.
-
(2015)
J. Clean. Prod.
, vol.99
, pp. 17-38
-
-
Binnemans, K.1
-
42
-
-
84927800894
-
A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium
-
Horiike T., Yamashita M. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl. Environ. Microbiol. 2015, 81:3062-3068.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 3062-3068
-
-
Horiike, T.1
Yamashita, M.2
-
43
-
-
84925245328
-
Ecology and biotechnology of selenium-respiring bacteria
-
Nancharaiah Y.V., Lens P.N. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 2015, 79:61-80.
-
(2015)
Microbiol. Mol. Biol. Rev.
, vol.79
, pp. 61-80
-
-
Nancharaiah, Y.V.1
Lens, P.N.2
-
44
-
-
84864921713
-
Microbial processing of tellurium as a tool in biotechnology
-
Turner R.J., et al. Microbial processing of tellurium as a tool in biotechnology. Biotechnol. Adv. 2012, 30:954-963.
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 954-963
-
-
Turner, R.J.1
-
45
-
-
84882278150
-
Data-driven review of thermoelectric materials: performance and resource considerations
-
Gaultois M.W., et al. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater 2013, 25:2911-2920.
-
(2013)
Chem. Mater
, vol.25
, pp. 2911-2920
-
-
Gaultois, M.W.1
-
46
-
-
84867137101
-
Future recycling flows of tellurium from cadmium telluride photovoltaic waste
-
Marwede M., Reller A. Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resour. Conserv. Recy. 2012, 69:35-49.
-
(2012)
Resour. Conserv. Recy.
, vol.69
, pp. 35-49
-
-
Marwede, M.1
Reller, A.2
-
47
-
-
0141938362
-
Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application
-
Rajwade J.M., Paknikar K.M. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 2003, 71:243-248.
-
(2003)
Hydrometallurgy
, vol.71
, pp. 243-248
-
-
Rajwade, J.M.1
Paknikar, K.M.2
-
48
-
-
84907976985
-
Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3
-
Bonificio W.D., Clarke D.R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J. Appl. Microbiol. 2014, 117:1293-1304.
-
(2014)
J. Appl. Microbiol.
, vol.117
, pp. 1293-1304
-
-
Bonificio, W.D.1
Clarke, D.R.2
-
49
-
-
33748668028
-
Aerobic granular biomass: a novel biomaterial for efficient uranium removal
-
Nancharaiah Y.V., et al. Aerobic granular biomass: a novel biomaterial for efficient uranium removal. Curr. Sci. INDIA 2006, 91:503-509.
-
(2006)
Curr. Sci. INDIA
, vol.91
, pp. 503-509
-
-
Nancharaiah, Y.V.1
-
51
-
-
84888423117
-
The biogeochemistry and bioremediation of uranium and other priority radionuclides
-
Newsome L., et al. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363:164-184.
-
(2014)
Chem. Geol.
, vol.363
, pp. 164-184
-
-
Newsome, L.1
-
52
-
-
77957770411
-
Biorecovery of uranium from aqueous solutions at the expense of phytic acid
-
Paterson-Beedle M., et al. Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy 2010, 104:524-528.
-
(2010)
Hydrometallurgy
, vol.104
, pp. 524-528
-
-
Paterson-Beedle, M.1
-
53
-
-
84885915198
-
Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans
-
Kulkarni S., et al. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J. Hazard. Mater. 2013, 262:853-861.
-
(2013)
J. Hazard. Mater.
, vol.262
, pp. 853-861
-
-
Kulkarni, S.1
-
55
-
-
84906687075
-
Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advances
-
Venkata Mohan S., et al. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advances. Renew. Sust. Energ. Rev. 2014, 40:779-797.
-
(2014)
Renew. Sust. Energ. Rev.
, vol.40
, pp. 779-797
-
-
Venkata Mohan, S.1
-
56
-
-
84922198482
-
Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications
-
Venkata Mohan S., et al. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour. Technol. 2014, 165:355-364.
-
(2014)
Bioresour. Technol.
, vol.165
, pp. 355-364
-
-
Venkata Mohan, S.1
-
57
-
-
84930088795
-
A logical data representation framework for electricity-driven bioproduction processes
-
Patil S.A., et al. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 2015, 33:736-744.
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 736-744
-
-
Patil, S.A.1
-
58
-
-
84936989704
-
2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis
-
2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J. CO2 Util. 2015, 10:78-87.
-
(2015)
J. CO2 Util.
, vol.10
, pp. 78-87
-
-
Annie Modestra, J.1
-
59
-
-
84892486205
-
Nutrient removal and recovery in bioelectrochemical systems: a review
-
Kelly P.T., He Z. Nutrient removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 2014, 153:351-360.
-
(2014)
Bioresour. Technol.
, vol.153
, pp. 351-360
-
-
Kelly, P.T.1
He, Z.2
-
60
-
-
84945442633
-
Metals removal and recovery in bioelectrochemical systems: a review
-
Nancharaiah Y.V., et al. Metals removal and recovery in bioelectrochemical systems: a review. Bioresour. Technol. 2015, 195:102-114.
-
(2015)
Bioresour. Technol.
, vol.195
, pp. 102-114
-
-
Nancharaiah, Y.V.1
-
61
-
-
77953507926
-
Bioelectrochemical perchlorate reduction in a microbial fuel cell
-
Butler C.S., et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 2010, 44:4685-4691.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 4685-4691
-
-
Butler, C.S.1
-
62
-
-
84939996698
-
Reductive behaviour of acid azo dye based wastewater: biocatalytic activity in conjunction with enzymatic and bio-electrocatalytic evaluation
-
Sreelatha S., et al. Reductive behaviour of acid azo dye based wastewater: biocatalytic activity in conjunction with enzymatic and bio-electrocatalytic evaluation. Bioresour. Technol. 2015, 188:2-8.
-
(2015)
Bioresour. Technol.
, vol.188
, pp. 2-8
-
-
Sreelatha, S.1
-
63
-
-
84870526742
-
Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
-
Huang L., et al. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour. Technol. 2013, 128:539-546.
-
(2013)
Bioresour. Technol.
, vol.128
, pp. 539-546
-
-
Huang, L.1
-
64
-
-
84883428614
-
Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells
-
Liu Y., et al. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. J. Hazard. Mater. 2013, 262:1-8.
-
(2013)
J. Hazard. Mater.
, vol.262
, pp. 1-8
-
-
Liu, Y.1
-
65
-
-
84896522153
-
Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems
-
Huang L., et al. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. J. Power Sources 2014, 259:54-64.
-
(2014)
J. Power Sources
, vol.259
, pp. 54-64
-
-
Huang, L.1
-
66
-
-
84874707527
-
The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell
-
Choi C., Hu N. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour. Technol. 2013, 133:589-598.
-
(2013)
Bioresour. Technol.
, vol.133
, pp. 589-598
-
-
Choi, C.1
Hu, N.2
-
67
-
-
84856583214
-
Recovery of silver from wastewater coupled with power generation using a microbial fuel cell
-
Choi C., Cui Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2012, 107:522-525.
-
(2012)
Bioresour. Technol.
, vol.107
, pp. 522-525
-
-
Choi, C.1
Cui, Y.2
-
68
-
-
84884208184
-
Electricity production from a bio-electrochemical cell for silver recovery in alkaline media
-
Wang Y-H., et al. Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl. Energ. 2013, 112:1337-1341.
-
(2013)
Appl. Energ.
, vol.112
, pp. 1337-1341
-
-
Wang, Y.-H.1
-
69
-
-
84862795873
-
Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors
-
Tao H-C., et al. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour. Technol. 2012, 111:92-97.
-
(2012)
Bioresour. Technol.
, vol.111
, pp. 92-97
-
-
Tao, H.-C.1
-
70
-
-
69849103522
-
Removal of selenite from wastewater using microbial fuel cells
-
Catal T., et al. Removal of selenite from wastewater using microbial fuel cells. Biotechnol. Lett. 2009, 31:1211-1216.
-
(2009)
Biotechnol. Lett.
, vol.31
, pp. 1211-1216
-
-
Catal, T.1
-
71
-
-
84907528504
-
Biomining: metal recovery from ores with microorganisms
-
Schippers A., et al. Biomining: metal recovery from ores with microorganisms. Adv. Biochem. Eng. Biotechnol. 2014, 141:1-47.
-
(2014)
Adv. Biochem. Eng. Biotechnol.
, vol.141
, pp. 1-47
-
-
Schippers, A.1
-
72
-
-
84879964410
-
Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects
-
Prabhu S., Poulose E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2:32.
-
(2012)
Int. Nano Lett.
, vol.2
, pp. 32
-
-
Prabhu, S.1
Poulose, E.K.2
-
73
-
-
41249091665
-
Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans
-
Deplanche K., Macaskie L.E. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol. Bioeng. 2008, 99:1055-1064.
-
(2008)
Biotechnol. Bioeng.
, vol.99
, pp. 1055-1064
-
-
Deplanche, K.1
Macaskie, L.E.2
-
74
-
-
84901632971
-
Microbial synthesis of gold nanoparticles: current status and future prospects
-
Shedbalkar U., et al. Microbial synthesis of gold nanoparticles: current status and future prospects. Adv. Colloid Inter. Sci. 2014, 209:40-48.
-
(2014)
Adv. Colloid Inter. Sci.
, vol.209
, pp. 40-48
-
-
Shedbalkar, U.1
-
75
-
-
84863566915
-
Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry
-
Deplanche K., et al. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J. R. Soc. Interface 2012, 9:1705-1712.
-
(2012)
J. R. Soc. Interface
, vol.9
, pp. 1705-1712
-
-
Deplanche, K.1
-
76
-
-
81455154474
-
Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles
-
Hosseinkhani B., et al. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol. Bioeng. 2012, 109:45-52.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 45-52
-
-
Hosseinkhani, B.1
-
77
-
-
33847761835
-
From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst
-
Yong P., et al. From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnol. Lett. 2007, 29:539-544.
-
(2007)
Biotechnol. Lett.
, vol.29
, pp. 539-544
-
-
Yong, P.1
-
78
-
-
84897669375
-
2 production from artificial acid mine drainage using the microbial electrolysis cell
-
2 production from artificial acid mine drainage using the microbial electrolysis cell. J. Hazard. Mater. 2014, 270:153-159.
-
(2014)
J. Hazard. Mater.
, vol.270
, pp. 153-159
-
-
Luo, H.1
-
79
-
-
80051998368
-
A bacterial process for selenium nanosphere assembly
-
Debieux C.M., et al. A bacterial process for selenium nanosphere assembly. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13480-13485.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 13480-13485
-
-
Debieux, C.M.1
-
80
-
-
84870201419
-
Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis
-
Butler C.S., et al. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem. Soc. Trans. 2012, 40:1239-1243.
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1239-1243
-
-
Butler, C.S.1
-
81
-
-
84931264121
-
Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms
-
Zonaro E., et al. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol. 2015, 6:584.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 584
-
-
Zonaro, E.1
-
82
-
-
79953175285
-
MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo
-
Tanaka M., et al. MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J. Biol. Chem. 2011, 286:6386-6392.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6386-6392
-
-
Tanaka, M.1
-
83
-
-
84930729067
-
Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens
-
Byrne J.M., et al. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. J. R. Soc. Interface 2015, 12:20150240.
-
(2015)
J. R. Soc. Interface
, vol.12
, pp. 20150240
-
-
Byrne, J.M.1
-
84
-
-
84925257148
-
Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell
-
Gangadharan P., Nambi I.M. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Water Sci. Technol. 2015, 71:353-358.
-
(2015)
Water Sci. Technol.
, vol.71
, pp. 353-358
-
-
Gangadharan, P.1
Nambi, I.M.2
-
85
-
-
54949100705
-
6+ using microbial fuel cell
-
6+ using microbial fuel cell. Process. Biochem. 2008, 43:1352-1358.
-
(2008)
Process. Biochem.
, vol.43
, pp. 1352-1358
-
-
Li, Z.J.1
-
86
-
-
84935887094
-
High rate copper and energy recovery in microbial fuel cells
-
Rodenas Motos P., et al. High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 2015, 6:527.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 527
-
-
Rodenas Motos, P.1
-
87
-
-
84938263550
-
Copper recovery from polluted soils using acidic washing and bioelectrochemical systems
-
Fedje K.K., et al. Copper recovery from polluted soils using acidic washing and bioelectrochemical systems. Metals 2015, 5:1328-1348.
-
(2015)
Metals
, vol.5
, pp. 1328-1348
-
-
Fedje, K.K.1
-
88
-
-
79955016287
-
2+ as an electron acceptor coupled with power generation using a microbial fuel cell
-
2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour. Technol. 2011, 102:6304-6307.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 6304-6307
-
-
Wang, Z.1
-
89
-
-
84865550608
-
Nickel ion removal from wastewater using the microbial electrolysis cell
-
Qin B., et al. Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour. Technol. 2012, 121:458-461.
-
(2012)
Bioresour. Technol.
, vol.121
, pp. 458-461
-
-
Qin, B.1
-
90
-
-
84895073088
-
Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
-
Abourached C., et al. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014, 51:228-233.
-
(2014)
Water Res.
, vol.51
, pp. 228-233
-
-
Abourached, C.1
-
91
-
-
84856378316
-
Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology
-
Zhang B., et al. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J. Power Sources 2012, 204:34-39.
-
(2012)
J. Power Sources
, vol.204
, pp. 34-39
-
-
Zhang, B.1
-
92
-
-
84865746608
-
Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
-
Modin O., et al. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J. Hazard. Mater. 2012, 235-236:291-297.
-
(2012)
J. Hazard. Mater.
, pp. 291-297
-
-
Modin, O.1
-
93
-
-
84908192556
-
Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells
-
Zhang Y., et al. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. J. Power Sources 2015, 273:1103-1113.
-
(2015)
J. Power Sources
, vol.273
, pp. 1103-1113
-
-
Zhang, Y.1
|