-
1
-
-
0032029664
-
Mechanical properties and the hierarchical structure of bone
-
Rho JY, Kuhn-Spearing L, Zioupos P,. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998; 20: 92-102.
-
(1998)
Med Eng Phys
, vol.20
, pp. 92-102
-
-
Rho, J.Y.1
Kuhn-Spearing, L.2
Zioupos, P.3
-
2
-
-
27644579095
-
Development of nanocomposites for bone grafting
-
Murugan R, Ramakrishna S,. Development of nanocomposites for bone grafting. Compos Sci Technol 2005; 65: 2385-2406.
-
(2005)
Compos Sci Technol
, vol.65
, pp. 2385-2406
-
-
Murugan, R.1
Ramakrishna, S.2
-
3
-
-
84884573729
-
Calcium orthophosphate-based bioceramics
-
Dorozhkin S,. Calcium orthophosphate-based bioceramics. Materials (Basel) 2013; 6: 3840-3942.
-
(2013)
Materials (Basel)
, vol.6
, pp. 3840-3942
-
-
Dorozhkin, S.1
-
4
-
-
84924585341
-
Hydroxyapatite-titanium bulk composites for bone tissue engineering applications
-
Kumar A, Biswas K, Basu B,. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. J Biomed Mater Res A 2014; 103: 791-806.
-
(2014)
J Biomed Mater Res A
, vol.103
, pp. 791-806
-
-
Kumar, A.1
Biswas, K.2
Basu, B.3
-
5
-
-
84882453420
-
On the toughness enhancement in hydroxyapatite-based composites
-
Kumar A, Biswas K, Basu B,. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater 2013; 61: 5198-5215.
-
(2013)
Acta Mater
, vol.61
, pp. 5198-5215
-
-
Kumar, A.1
Biswas, K.2
Basu, B.3
-
6
-
-
79551480846
-
The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo
-
Feng B, Jinkang Z, Zhen W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater 2011; 6: 015007-015007.
-
(2011)
Biomed Mater
, vol.6
-
-
Feng, B.1
Jinkang, Z.2
Zhen, W.3
-
7
-
-
0036132596
-
Measurements of the solubilities and dissolution rates of several hydroxyapatites
-
Fulmer MT, Ison IC, Hankermayer CR, et al. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials 2002; 23: 751-755.
-
(2002)
Biomaterials
, vol.23
, pp. 751-755
-
-
Fulmer, M.T.1
Ison, I.C.2
Hankermayer, C.R.3
-
8
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D,. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474-5491.
-
(2005)
Biomaterials
, vol.26
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
9
-
-
84944898451
-
Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications
-
Epub ahead of print
-
Vasireddi R and Basu B. Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications. Rapid Prototyp J. Epub ahead of print 2015. DOI: 10.1108/RPJ-12-2013-0123.
-
(2015)
Rapid Prototyp J
-
-
Vasireddi, R.1
Basu, B.2
-
10
-
-
84906937062
-
Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions
-
Lode A, Meissner K, Luo Y, et al. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J Tissue Eng Regen Med 2014; 8: 682-693.
-
(2014)
J Tissue Eng Regen Med
, vol.8
, pp. 682-693
-
-
Lode, A.1
Meissner, K.2
Luo, Y.3
-
11
-
-
84883130621
-
Fabrication of computationally designed scaffolds by low temperature 3D printing
-
Castilho M, Dias M, Gbureck U,. Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication 2013; 66: 911-917.
-
(2013)
Biofabrication
, vol.66
, pp. 911-917
-
-
Castilho, M.1
Dias, M.2
Gbureck, U.3
-
12
-
-
78049528486
-
3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects
-
Klammert U, Gbureck U, Vorndran E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Craniomaxillofac Surg 2010; 38: 565-570.
-
(2010)
J Craniomaxillofac Surg
, vol.38
, pp. 565-570
-
-
Klammert, U.1
Gbureck, U.2
Vorndran, E.3
-
13
-
-
34247469773
-
3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle on part strength
-
Chumnanklang R, Panyathanmaporn T, Sitthiseripratip K, et al. 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength. Mater Sci Eng C 2007; 27: 914-921.
-
(2007)
Mater Sci Eng C
, vol.27
, pp. 914-921
-
-
Chumnanklang, R.1
Panyathanmaporn, T.2
Sitthiseripratip, K.3
-
14
-
-
84883216315
-
Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions
-
Luo Y, Lode A, Sonntag F, et al. Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. J Mater Chem B 2013; 1: 4088-4098.
-
(2013)
J Mater Chem B
, vol.1
, pp. 4088-4098
-
-
Luo, Y.1
Lode, A.2
Sonntag, F.3
-
15
-
-
0346634885
-
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
-
Landers R, Hübner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 2002; 23: 4437-4447.
-
(2002)
Biomaterials
, vol.23
, pp. 4437-4447
-
-
Landers, R.1
Hübner, U.2
Schmelzeisen, R.3
-
16
-
-
84908228056
-
Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs
-
Luo Y, Akkineni AR, Gelinsky M,. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2014; 28: 279-285.
-
(2014)
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
, vol.28
, pp. 279-285
-
-
Luo, Y.1
Akkineni, A.R.2
Gelinsky, M.3
-
17
-
-
84904308833
-
3D biofabrication strategies for tissue engineering and regenerative medicine
-
Bajaj P, Schweller RM, Khademhosseini A, et al. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 2014; 16: 247-276.
-
(2014)
Annu Rev Biomed Eng
, vol.16
, pp. 247-276
-
-
Bajaj, P.1
Schweller, R.M.2
Khademhosseini, A.3
-
18
-
-
84944274278
-
3D plotting of growth factor loaded calcium phosphate cement scaffolds
-
Akkineni AR, Luo Y, Schumacher M, et al. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 2015; 27: 264-274.
-
(2015)
Acta Biomater
, vol.27
, pp. 264-274
-
-
Akkineni, A.R.1
Luo, Y.2
Schumacher, M.3
-
19
-
-
33744832163
-
Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications
-
Miranda P, Saiz E, Gryn K, et al. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2006; 2: 457-466.
-
(2006)
Acta Biomater
, vol.2
, pp. 457-466
-
-
Miranda, P.1
Saiz, E.2
Gryn, K.3
-
20
-
-
34447327546
-
Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering
-
Dellinger JG, Cesarano J, Jamison RD,. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J Biomed Mater Res A 2007; 82A: 383-394.
-
(2007)
J Biomed Mater Res A
, vol.82
, pp. 383-394
-
-
Dellinger, J.G.1
Cesarano, J.2
Jamison, R.D.3
-
21
-
-
33847105017
-
Preparation of porous hydroxyapatite scaffolds
-
Saiz E, Gremillard L, Menendez G, et al. Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C 2007; 27: 546-550.
-
(2007)
Mater Sci Eng C
, vol.27
, pp. 546-550
-
-
Saiz, E.1
Gremillard, L.2
Menendez, G.3
-
22
-
-
84884202163
-
On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds
-
Houmard M, Fu Q, Genet M, et al. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 2013; 101: 1233-1242.
-
(2013)
J Biomed Mater Res B Appl Biomater
, vol.101
, pp. 1233-1242
-
-
Houmard, M.1
Fu, Q.2
Genet, M.3
-
23
-
-
84862203276
-
3D-printing of highly uniform CaSiO3 ceramic scaffolds: Preparation, characterization and in vivo osteogenesis
-
Wu C, Fan W, Zhou Y, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 2012; 22: 12288-12295.
-
(2012)
J Mater Chem
, vol.22
, pp. 12288-12295
-
-
Wu, C.1
Fan, W.2
Zhou, Y.3
-
24
-
-
36049039855
-
Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting
-
Miranda P, Pajares A, Saiz E, et al. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. J Biomed Mater Res A 2007; 83: 646-655.
-
(2007)
J Biomed Mater Res A
, vol.83
, pp. 646-655
-
-
Miranda, P.1
Pajares, A.2
Saiz, E.3
-
25
-
-
40449137701
-
Mechanical properties of calcium phosphate scaffolds fabricated by robocasting
-
Miranda P, Pajares A, Saiz E, et al. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res Part A 2008; 85: 218-227.
-
(2008)
J Biomed Mater Res Part A
, vol.85
, pp. 218-227
-
-
Miranda, P.1
Pajares, A.2
Saiz, E.3
-
26
-
-
70449701899
-
Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel
-
Franco J, Hunger P, Launey M, et al. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 2010; 6: 218-228.
-
(2010)
Acta Biomater
, vol.6
, pp. 218-228
-
-
Franco, J.1
Hunger, P.2
Launey, M.3
-
27
-
-
84905457631
-
Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks
-
Maazouz Y, Montufar EB, Guillem-Marti J, et al. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2014; 2: 5378-5386.
-
(2014)
J Mater Chem B
, vol.2
, pp. 5378-5386
-
-
Maazouz, Y.1
Montufar, E.B.2
Guillem-Marti, J.3
-
28
-
-
0034084101
-
Enhanced functions of osteoblasts on nanophase ceramics
-
Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803-1810.
-
(2000)
Biomaterials
, vol.21
, pp. 1803-1810
-
-
Webster, T.J.1
Ergun, C.2
Doremus, R.H.3
-
30
-
-
64849111461
-
Bone cell materials interaction on alumina ceramics with different grain sizes
-
Chanda A, SinghaRoy R, Xue W,. Bone cell materials interaction on alumina ceramics with different grain sizes. Mater Sci Eng C 2009; 29: 1201-1206.
-
(2009)
Mater Sci Eng C
, vol.29
, pp. 1201-1206
-
-
Chanda, A.1
SinghaRoy, R.2
Xue, W.3
|