메뉴 건너뛰기




Volumn 62, Issue 12, 2015, Pages 2860-2866

Discrete Wavelet Transform-Based Whole-Spectral and Subspectral Analysis for Improved Brain Tumor Clustering Using Single Voxel MR Spectroscopy

Author keywords

Brain tumor; clustering; dimension reduction; discrete wavelet transform; glioma grade; magnetic resonance spectroscopy; unsupervised learning

Indexed keywords

BRAIN; CLUSTERING ALGORITHMS; DISCRETE WAVELET TRANSFORMS; GRADING; MAGNETIC RESONANCE; MAGNETIC RESONANCE SPECTROSCOPY; PATTERN RECOGNITION; REDUCTION; SPECTRUM ANALYSIS; TUMORS; UNSUPERVISED LEARNING;

EID: 84960102491     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2448232     Document Type: Article
Times cited : (41)

References (27)
  • 1
    • 2442642550 scopus 로고    scopus 로고
    • Brain tumours: Classification and genes
    • Jun.
    • V. P. Collins, "Brain tumours: Classification and genes," J. Neurol. Neurosurg. Psychiatry, vol. 75, pp. ii2-ii11, Jun. 2004.
    • (2004) J. Neurol. Neurosurg. Psychiatry , vol.75 , pp. ii2-ii11
    • Collins, V.P.1
  • 2
    • 34547122001 scopus 로고    scopus 로고
    • The 2007 WHO classification of tumours of the central nervous system
    • Aug.
    • D. N. Louis et al., "The 2007 WHO classification of tumours of the central nervous system," Acta Neuropathol., vol. 114, no. 2, pp. 97-109, Aug. 2007.
    • (2007) Acta Neuropathol. , vol.114 , Issue.2 , pp. 97-109
    • Louis, D.N.1
  • 3
    • 81755172041 scopus 로고    scopus 로고
    • Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions
    • Sep.
    • J. Faehndrich et al., "Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions," Clin. Neuroradiol., vol. 21, no. 3, pp. 123-39, Sep. 2011.
    • (2011) Clin. Neuroradiol. , vol.21 , Issue.3 , pp. 123-139
    • Faehndrich, J.1
  • 4
    • 84905036989 scopus 로고    scopus 로고
    • Data-driven grading of brain gliomas: A multiparametric MR imaging study
    • M. Caulo et al., "Data-driven grading of brain gliomas: A multiparametric MR imaging study," Radiology, vol. 272, no. 2, pp. 494-503, 2014.
    • (2014) Radiology , vol.272 , Issue.2 , pp. 494-503
    • Caulo, M.1
  • 6
    • 5444246286 scopus 로고    scopus 로고
    • Classification of brain tumours using short echo time 1H MR spectra
    • Sep.
    • A. Devos et al., "Classification of brain tumours using short echo time 1H MR spectra," J. Magn. Reson., vol. 170, no. 1, pp. 164-175, Sep. 2004.
    • (2004) J. Magn. Reson. , vol.170 , Issue.1 , pp. 164-175
    • Devos, A.1
  • 7
    • 0036228061 scopus 로고    scopus 로고
    • A wavelet packets decomposition algorithm for quantification of in vivo (1)H-MRS parameters
    • Apr.
    • L. T. Mainardi et al., "A wavelet packets decomposition algorithm for quantification of in vivo (1)H-MRS parameters," Med. Eng. Phys., vol. 24, no. 3, pp. 201-208, Apr. 2002.
    • (2002) Med. Eng. Phys. , vol.24 , Issue.3 , pp. 201-208
    • Mainardi, L.T.1
  • 8
    • 84873131982 scopus 로고    scopus 로고
    • A novelm CAD for pediatric metabolic brain diseases incorporating DW imaging and MR spectroscopy
    • Feb.
    • S. Z. Mahmoodabadi et al., "A novelm CAD for pediatric metabolic brain diseases incorporating DW imaging and MR spectroscopy," Expert Syst., vol. 30, no. 1, pp. 21-33, Feb. 2013.
    • (2013) Expert Syst. , vol.30 , Issue.1 , pp. 21-33
    • Mahmoodabadi, S.Z.1
  • 9
    • 84858846668 scopus 로고    scopus 로고
    • Multimodal wavelet embedding representation for data combination (MaWERiC): Integrating magnetic resonance imaging and spectroscopy for prostate cancer detection
    • Apr.
    • P. Tiwari et al., "Multimodal wavelet embedding representation for data combination (MaWERiC): Integrating magnetic resonance imaging and spectroscopy for prostate cancer detection," NMR Biomed., vol. 25, no. 4, pp. 607-19, Apr. 2012.
    • (2012) NMR Biomed. , vol.25 , Issue.4 , pp. 607-619
    • Tiwari, P.1
  • 10
    • 0024700097 scopus 로고
    • A theory formultiresolution signal decomposition: Thewavelet representation
    • Jul.
    • S. Mallat, "A theory formultiresolution signal decomposition: Thewavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 11
    • 57249097670 scopus 로고    scopus 로고
    • An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization
    • Sep.
    • L. Chen et al., "An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization," J. Magn. Reson., vol. 158, no. 1-2, pp. 164-168, Sep. 2002.
    • (2002) J. Magn. Reson. , vol.158 , Issue.1-2 , pp. 164-168
    • Chen, L.1
  • 12
    • 84978423244 scopus 로고    scopus 로고
    • Nonlinear Laplacian Eigenmaps dimension reduction of in-vivo magnetic resonance spectroscopic imaging analysis
    • G. Yang et al., "Nonlinear Laplacian Eigenmaps dimension reduction of in-vivo magnetic resonance spectroscopic imaging analysis," in Proc. Int. Soc. Magnetic Resonance Med. 21st Annu. Meet., 2013, p. 1967.
    • (2013) Proc. Int. Soc. Magnetic Resonance Med. 21st Annu. Meet. , pp. 1967
    • Yang, G.1
  • 13
    • 84927928389 scopus 로고    scopus 로고
    • Classification of brain tumour 1H MR spectra: Extracting features by metabolite quantification or nonlinear manifold learning?
    • G. Yang et al., "Classification of brain tumour 1H MR spectra: Extracting features by metabolite quantification or nonlinear manifold learning?," in Proc. Biomed. Imag. 11th Int. Symp., 2014, pp. 1039-1042.
    • (2014) Proc. Biomed. Imag. 11th Int. Symp. , pp. 1039-1042
    • Yang, G.1
  • 14
    • 84939567307 scopus 로고    scopus 로고
    • Manifold learning in MRspectroscopy using nonlinear dimensionality reduction and unsupervised clustering
    • G. Yang et al., "Manifold learning in MRspectroscopy using nonlinear dimensionality reduction and unsupervised clustering," Magn. Reson. Med., 2014. DOI: 10.1002/mrm.25447.
    • (2014) Magn. Reson. Med.
    • Yang, G.1
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng et al., "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1
  • 17
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • Aug.
    • R. L. Somorjai et al., "Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions," Bioinformatics, vol. 19, no. 12, pp. 1484-1491, Aug. 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.L.1
  • 18
    • 37349122127 scopus 로고    scopus 로고
    • Linear discriminant analysis of brain tumour 1H MR spectra: A comparison of classification using whole spectra versus metabolite quantification
    • K. S. Opstad et al., "Linear discriminant analysis of brain tumour 1H MR spectra: A comparison of classification using whole spectra versus metabolite quantification," NMR Biomed., vol. 20, no. 8, pp. 763-770, 2007.
    • (2007) NMR Biomed. , vol.20 , Issue.8 , pp. 763-770
    • Opstad, K.S.1
  • 19
    • 34547137028 scopus 로고    scopus 로고
    • The Bonferonni and Šidák corrections for multiple comparisons
    • Newbury Park, CA, USA: Sage
    • H. Abdi, "The Bonferonni and Šidák corrections for multiple comparisons," in Encyclopedia of Measurement and Statistics. Newbury Park, CA, USA: Sage, 2007, pp. 103-107.
    • (2007) Encyclopedia of Measurement and Statistics , pp. 103-107
    • Abdi, H.1
  • 20
    • 0043131975 scopus 로고    scopus 로고
    • 1H MR spectroscopy of brain tumours and masses
    • May
    • F. A. Howe and K. S. Opstad, "1H MR spectroscopy of brain tumours and masses," NMR Biomed., vol. 16, no. 3, pp. 123-131, May 2003.
    • (2003) NMR Biomed. , vol.16 , Issue.3 , pp. 123-131
    • Howe, F.A.1    Opstad, K.S.2
  • 21
    • 84949928381 scopus 로고    scopus 로고
    • Trajectory clustering for motion pattern extraction in aerial videos
    • T. Nawaz et al., "Trajectory clustering for motion pattern extraction in aerial videos," in Proc. IEEE Int. Conf. Image Process., 2014, pp. 1016-1020.
    • (2014) Proc. IEEE Int. Conf. Image Process , pp. 1016-1020
    • Nawaz, T.1
  • 22
    • 84966235265 scopus 로고    scopus 로고
    • Section 16.4. Hierarchical clustering by phylogenetic trees
    • New York, NY, USA: Cambridge Univ. Press
    • W. Press et al., "Section 16.4. Hierarchical clustering by phylogenetic trees," in Numerical Recipes: The Art of Scientific Computing. New York, NY, USA: Cambridge Univ. Press, 2007, pp. 868-881.
    • (2007) Numerical Recipes: The Art of Scientific Computing , pp. 868-881
    • Press, W.1
  • 23
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Berlin, Germany: Springer
    • Y. Chen and C. Lin, "Combining SVMs with various feature selection strategies," in Feature Extraction: Foundations and Applications. Berlin, Germany: Springer, 2006, pp. 315-324.
    • (2006) Feature Extraction: Foundations and Applications , pp. 315-324
    • Chen, Y.1    Lin, C.2
  • 24
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Nov.
    • P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," J. Comput. Appl. Math., vol. 20, pp. 53-65, Nov. 1987.
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 25
    • 84939575791 scopus 로고    scopus 로고
    • On the use of long TE and short TE SV MR spectroscopy to improve the automatic brain tumor diagnosis
    • Katholieke Univ. Leuven, Leuven, Belgium, Tech. Rep. 07-55
    • J. García-Gómez et al., "On the use of long TE and short TE SV MR spectroscopy to improve the automatic brain tumor diagnosis," Biomedical Data Mining Research Line, Katholieke Univ. Leuven, Leuven, Belgium, Tech. Rep. 07-55. pp. 1-25, 2007.
    • (2007) Biomedical Data Mining Research Line , pp. 1-25
    • García-Gómez, J.1
  • 26
    • 84857951139 scopus 로고    scopus 로고
    • Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours
    • Jan.
    • S. Ortega-Martorell et al., "Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours," BMC Bioinformat., vol. 13, no. 1, pp. 1-20, Jan. 2012.
    • (2012) BMC Bioinformat. , vol.13 , Issue.1 , pp. 1-20
    • Ortega-Martorell, S.1
  • 27
    • 84925643258 scopus 로고    scopus 로고
    • 1H 2D MRSI tissue type analysis of gliomas
    • Jun.
    • F. Raschke et al., "1H 2D MRSI tissue type analysis of gliomas," Magn. Reson. Med., vol. 73, no. 4, pp. 1381-1389, Jun. 2014.
    • (2014) Magn. Reson. Med. , vol.73 , Issue.4 , pp. 1381-1389
    • Raschke, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.