메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 181-189

Linking heterogeneous input spaces with pivots for multi-task learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION;

EID: 84959910535     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973440.21     Document Type: Conference Paper
Times cited : (13)

References (29)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 4
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. T. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In EMNLP, pages 120-128, 2006.
    • (2006) EMNLP , pp. 120-128
    • Blitzer, J.1    McDonald, R.T.2    Pereira, F.3
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled sata with co-training
    • A. Blum and T. M. Mitchell. Combining labeled and unlabeled sata with co-training. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.M.2
  • 7
    • 70049106295 scopus 로고    scopus 로고
    • A convex formulation for learning shared structures from multiple tasks
    • J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In ICML, page 18, 2009.
    • (2009) ICML , pp. 18
    • Chen, J.1    Tang, L.2    Liu, J.3    Ye, J.4
  • 8
    • 84863349934 scopus 로고    scopus 로고
    • Translated learning: Transfer learning across different feature spaces
    • W. Dai, Y. Chen, G.-R. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning across different feature spaces. In NIPS, pages 353-360, 2008.
    • (2008) NIPS , pp. 353-360
    • Dai, W.1    Chen, Y.2    Xue, G.-R.3    Yang, Q.4    Yu, Y.5
  • 9
    • 70049104383 scopus 로고    scopus 로고
    • Eigentransfer: A unified framework for transfer learning
    • W. Dai, O. Jin, G.-R. Xue, Q. Yang, and Y. Yu. Eigentransfer: a unified framework for transfer learning. In ICML, page 25, 2009.
    • (2009) ICML , pp. 25
    • Dai, W.1    Jin, O.2    Xue, G.-R.3    Yang, Q.4    Yu, Y.5
  • 10
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In ICML, 2012.
    • (2012) ICML
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 11
  • 13
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In KDD, pages 109-117, 2004.
    • (2004) KDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 14
    • 84877724400 scopus 로고    scopus 로고
    • Multi-stage multi-task feature learning
    • P. Gong, J. Ye, and C. Zhang. Multi-stage multi-task feature learning. In NIPS, pages 1997-2005, 2012.
    • (2012) NIPS , pp. 1997-2005
    • Gong, P.1    Ye, J.2    Zhang, C.3
  • 15
    • 80053439042 scopus 로고    scopus 로고
    • Learning from multiple outlooks
    • M. Harel and S. Mannor. Learning from multiple outlooks. In ICML, pages 401-408, 2011.
    • (2011) ICML , pp. 401-408
    • Harel, M.1    Mannor, S.2
  • 16
    • 80053436238 scopus 로고    scopus 로고
    • A graphbased framework for multi-task multi-view learning
    • J. He and R. Lawrence. A graphbased framework for multi-task multi-view learning. In ICML, pages 25-32, 2011.
    • (2011) ICML , pp. 25-32
    • He, J.1    Lawrence, R.2
  • 17
    • 84959866421 scopus 로고    scopus 로고
    • Bayesian multitask learning with latent hierarchies
    • 0907.0783, III H.D.
    • H. D. III. Bayesian multitask learning with latent hierarchies. CoRR, abs/0907.0783, 2009.
    • (2009) CoRR
  • 18
    • 84862280210 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • 0907.1815, III H.D.
    • H. D. III. Frustratingly easy domain adaptation. CoRR, abs/0907.1815, 2009.
    • (2009) CoRR
  • 19
    • 84877772304 scopus 로고    scopus 로고
    • Multi-task vector field learning
    • B. Lin, S. Yang, C. Zhang, J. Ye, and X. He. Multi-task vector field learning. In NIPS, pages 296-304, 2012.
    • (2012) NIPS , pp. 296-304
    • Lin, B.1    Yang, S.2    Zhang, C.3    Ye, J.4    He, X.5
  • 20
    • 85042563162 scopus 로고    scopus 로고
    • Semi-supervised multitask learning
    • Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. In NIPS, 2007.
    • (2007) NIPS
    • Liu, Q.1    Liao, X.2    Carin, L.3
  • 22
    • 77954584149 scopus 로고    scopus 로고
    • Crossdomain sentiment classification via spectral feature alignment
    • S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen. Crossdomain sentiment classification via spectral feature alignment. In WWW, pages 751-760, 2010.
    • (2010) WWW , pp. 751-760
    • Pan, S.J.1    Ni, X.2    Sun, J.-T.3    Yang, Q.4    Chen, Z.5
  • 23
    • 84859947224 scopus 로고    scopus 로고
    • Cross-language text classification using structural correspondence learning
    • P. Prettenhofer and B. Stein. Cross-language text classification using structural correspondence learning. In ACL, pages 1118-1127, 2010.
    • (2010) ACL , pp. 1118-1127
    • Prettenhofer, P.1    Stein, B.2
  • 25
    • 84859895920 scopus 로고    scopus 로고
    • Co-training for cross-lingual sentiment classification
    • X. Wan. Co-training for cross-lingual sentiment classification. In ACL/AFNLP, pages 235-243, 2009.
    • (2009) ACL/AFNLP , pp. 235-243
    • Wan, X.1
  • 26
    • 77956221086 scopus 로고    scopus 로고
    • Heterogeneous transfer learning for image clustering via the socialweb
    • Suntec, Singapore, August
    • Q. Yang, Y. Chen, G.-R. Xue, W. Dai, and Y. Yu. Heterogeneous transfer learning for image clustering via the socialweb. In ACL/AFNLP, pages 1-9, Suntec, Singapore, August 2009.
    • (2009) ACL/AFNLP , pp. 1-9
    • Yang, Q.1    Chen, Y.2    Xue, G.-R.3    Dai, W.4    Yu, Y.5
  • 27
    • 85161985386 scopus 로고    scopus 로고
    • Learning multiple tasks with a sparse matrix-normal penalty
    • Y. Zhang and J. Schneider. Learning multiple tasks with a sparse matrix-normal penalty. In NIPS, 2010.
    • (2010) NIPS
    • Zhang, Y.1    Schneider, J.2
  • 28
    • 36348985475 scopus 로고    scopus 로고
    • A text-to-picture synthesis system for augmenting communication
    • X. Zhu, A. B. Goldberg, M. Eldawy, C. R. Dyer, and B. Strock. A text-to-picture synthesis system for augmenting communication. In AAAI, pages 1590-, 2007.
    • (2007) AAAI , pp. 1590
    • Zhu, X.1    Goldberg, A.B.2    Eldawy, M.3    Dyer, C.R.4    Strock, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.