메뉴 건너뛰기




Volumn 23, Issue 3, 2015, Pages 517-529

From feedforward to recurrent LSTM neural networks for language modeling

Author keywords

Feedforward neural network; Kneser Ney smoothing; language modeling; long short term memory (LSTM); recurrent neural network (RNN)

Indexed keywords

BRAIN; COMPLEX NETWORKS; COMPUTATIONAL LINGUISTICS; FEEDFORWARD NEURAL NETWORKS; MODELING LANGUAGES; PROBABILITY DISTRIBUTIONS; SPEECH RECOGNITION; RECURRENT NEURAL NETWORKS;

EID: 84924036578     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASLP.2015.2400218     Document Type: Article
Times cited : (477)

References (53)
  • 1
    • 0000241978 scopus 로고    scopus 로고
    • Two decades of statistical language modeling: Where do we go from here?
    • Aug.
    • R. Rosenfeld, "Two decades of statistical language modeling: Where do we go from here?," Proc. IEEE, vol. 88, no. 8, pp. 359-394, Aug. 2000.
    • (2000) Proc. IEEE , vol.88 , Issue.8 , pp. 359-394
    • Rosenfeld, R.1
  • 2
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer
    • Mar.
    • S. M. Katz, "Estimation of probabilities from sparse data for the language model component of a speech recognizer," IEEE Trans. Acoust., Speech, Signal Process., vol. 35, no. 3, pp. 400-401, Mar. 1987.
    • (1987) IEEE Trans. Acoust., Speech, Signal Process. , vol.35 , Issue.3 , pp. 400-401
    • Katz, S.M.1
  • 3
    • 0028996876 scopus 로고    scopus 로고
    • Improved backing-off for M-Gram language modeling
    • R. Kneser and H. Ney, "Improved backing-off for M-Gram language modeling," in Proc. ICASSP, 1995, pp. 181-184.
    • Proc. ICASSP, 1995 , pp. 181-184
    • Kneser, R.1    Ney, H.2
  • 4
    • 0033329799 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • S. F. Chen and J. Goodman, "An empirical study of smoothing techniques for language modeling," Comput. Speech Lang., vol. 13, no. 4, pp. 359-393, 1999.
    • (1999) Comput. Speech Lang. , vol.13 , Issue.4 , pp. 359-393
    • Chen, S.F.1    Goodman, J.2
  • 6
    • 0009577944 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Y. Bengio and R. Ducharme, "A neural probabilistic language model,"in Proc. NIPS, 2000, vol. 13, pp. 933-938.
    • (2000) Proc. NIPS , vol.13 , pp. 933-938
    • Bengio, Y.1    Ducharme, R.2
  • 7
    • 33847610331 scopus 로고    scopus 로고
    • Continuous space language models
    • H. Schwenk, "Continuous space language models," Comput. Speech Lang., vol. 21, pp. 492-518, 2007.
    • (2007) Comput. Speech Lang. , vol.21 , pp. 492-518
    • Schwenk, H.1
  • 12
    • 85032751521 scopus 로고    scopus 로고
    • Dynamic programming search for continuous speech recognition
    • Sep.
    • H. Ney and S. Ortmanns, "Dynamic programming search for continuous speech recognition," IEEE Signal Process. Mag., vol. 16, no. 5, pp. 64-83, Sep. 1999.
    • (1999) IEEE Signal Process. Mag. , vol.16 , Issue.5 , pp. 64-83
    • Ney, H.1    Ortmanns, S.2
  • 13
  • 16
    • 84867615076 scopus 로고    scopus 로고
    • Performance analysis of neural networks in combination with -gram language models
    • I. Oparin, M. Sundermeyer, H. Ney, and J.-L. Gauvain, "Performance analysis of neural networks in combination with -gram language models," in Proc. ICASSP, 2012, pp. 5005-5008.
    • Proc. ICASSP, 2012 , pp. 5005-5008
    • Oparin, I.1    Sundermeyer, M.2    Ney, H.3    Gauvain, J.-L.4
  • 18
    • 84906217753 scopus 로고    scopus 로고
    • Measuring the influence of long range dependencies with neural network language models
    • H. S. Le, A. Allauzen, and F. Yvon, "Measuring the influence of long range dependencies with neural network language models," in Proc. NAACL-HLT Workshop, 2012, pp. 1-10.
    • Proc. NAACL-HLT Workshop, 2012 , pp. 1-10
    • Le, H.S.1    Allauzen, A.2    Yvon, F.3
  • 19
  • 20
    • 84906240855 scopus 로고    scopus 로고
    • Prefix tree based N-best list re-scoring for recurrent neural network language model used in speech recognition system
    • Y. Si, Q. Zhang, T. Li, J. Pan, and A. Yan, "Prefix tree based N-best list re-scoring for recurrent neural network language model used in speech recognition system," in Proc. Interspeech, 2013, pp. 3419-3423.
    • Proc. Interspeech, 2013 , pp. 3419-3423
    • Si, Y.1    Zhang, Q.2    Li, T.3    Pan, J.4    Yan, A.5
  • 21
    • 0039452635 scopus 로고    scopus 로고
    • Recognition performance of a structured language model
    • C. Chelba and F. Jelinek, "Recognition performance of a structured language model," in Proc. Eurospeech, 1999, vol. 4, pp. 1567-1570.
    • (1999) Proc.Eurospeech , vol.4 , pp. 1567-1570
    • Chelba, C.1    Jelinek, F.2
  • 22
    • 80053284315 scopus 로고    scopus 로고
    • A fast re-scoring strategy to capture long-distance dependencies
    • A. Deoras, T. Mikolov, and K. Church, "A fast re-scoring strategy to capture long-distance dependencies," in Proc. EMLNP, 2011, pp. 1116-1127.
    • Proc. EMLNP, 2011 , pp. 1116-1127
    • Deoras, A.1    Mikolov, T.2    Church, K.3
  • 23
    • 84926321124 scopus 로고    scopus 로고
    • Joint language and translation modeling with recurrent neural networks
    • M. Auli, M. Galley, C. Quirk, and G. Zweig, "Joint language and translation modeling with recurrent neural networks," in Proc. EMNLP, 2013, pp. 1044-1054.
    • Proc. EMNLP, 2013 , pp. 1044-1054
    • Auli, M.1    Galley, M.2    Quirk, C.3    Zweig, G.4
  • 24
    • 84905240726 scopus 로고    scopus 로고
    • Efficient lattice rescoring using recurrent neural network language models
    • X. Liu, Y. Wang, X. Chen, M. J. F. Gales, and P. C. Woodland, "Efficient lattice rescoring using recurrent neural network language models," in Proc. ICASSP, 2014, pp. 4941-4945.
    • Proc. ICASSP, 2014 , pp. 4941-4945
    • Liu, X.1    Wang, Y.2    Chen, X.3    Gales, M.J.F.4    Woodland, P.C.5
  • 25
    • 84910060565 scopus 로고    scopus 로고
    • Lattice decoding and rescoring with long-span neural network language models
    • M. Sundermeyer, Z. Tüske, R. Schlüter, and H. Ney, "Lattice decoding and rescoring with long-span neural network language models," in Proc. Interspeech, 2014, pp. 661-665.
    • Proc.Interspeech, 2014 , pp. 661-665
    • Sundermeyer, M.1    Tüske, Z.2    Schlüter, R.3    Ney, H.4
  • 26
    • 84867332205 scopus 로고    scopus 로고
    • Use of contexts in language model interpolation and adaptation
    • X. Liu, M. J. F. Gales, and P. C. Woodland, "Use of contexts in language model interpolation and adaptation," Comput. Speech Lang., vol. 27, no. 1, pp. 301-321, 2013.
    • (2013) Comput. Speech Lang. , vol.27 , Issue.1 , pp. 301-321
    • Liu, X.1    Gales, M.J.F.2    Woodland, P.C.3
  • 27
    • 0034296009 scopus 로고    scopus 로고
    • Finding consensus in speech recognition: Word error minimization and other applications of confusion networks
    • L. Mangu, E. Brill, and A. Stolcke, "Finding consensus in speech recognition: Word error minimization and other applications of confusion networks,"Comput. Speech Lang., vol. 14, no. 4, pp. 373-400, 2000.
    • (2000) Comput. Speech Lang. , vol.14 , Issue.4 , pp. 373-400
    • Mangu, L.1    Brill, E.2    Stolcke, A.3
  • 28
    • 84905229914 scopus 로고    scopus 로고
    • Cache based recurrent neural network language model inference for first pass speech recognition
    • Z. Huang, G. Zweig, and B. Dumoulin, "Cache based recurrent neural network language model inference for first pass speech recognition,"in Proc. ICASSP, 2015, pp. 6404-6408.
    • Proc. ICASSP, 2015 , pp. 6404-6408
    • Huang, Z.1    Zweig, G.2    Dumoulin, B.3
  • 29
    • 84924041348 scopus 로고    scopus 로고
    • Real-time one-pass decoding with recurrent neural network language model for speech recognition
    • T. Hori, Y. Kubo, and A. Nakamura, "Real-time one-pass decoding with recurrent neural network language model for speech recognition,"in Proc. ICASSP, 2015, pp. 6414-6418.
    • Proc. ICASSP, 2015 , pp. 6414-6418
    • Hori, T.1    Kubo, Y.2    Nakamura, A.3
  • 30
    • 4243335438 scopus 로고
    • Single-layer networks
    • Oxford, U.K.: Oxford Univ. Press ch. 3
    • C. M. Bishop, "Single-layer networks," in Neural Networks for Pattern Recognition . Oxford, U.K.: Oxford Univ. Press, 1995, ch. 3, pp. 77-115.
    • (1995) Neural Networks for Pattern Recognition , pp. 77-115
    • Bishop, C.M.1
  • 31
    • 0034856455 scopus 로고    scopus 로고
    • Classes for fast maximum entropy training
    • J. Goodman, "Classes for fast maximum entropy training," in Proc. ICASSP, 2001, pp. 561-564.
    • Proc. ICASSP, 2001 , pp. 561-564
    • Goodman, J.1
  • 33
    • 84910089104 scopus 로고    scopus 로고
    • Forming word classes by statistical clustering for statistical language modelling
    • R. Kneser and H. Ney, "Forming word classes by statistical clustering for statistical language modelling," in Proc. QUALICO, 1991, pp. 221-226.
    • Proc. QUALICO, 1991 , pp. 221-226
    • Kneser, R.1    Ney, H.2
  • 35
    • 84890477112 scopus 로고    scopus 로고
    • Speed regularization and optimality in word classing
    • G. Zweig and K. Makarychev, "Speed regularization and optimality in word classing," in Proc. ICASSP, 2013, pp. 8237-8241.
    • Proc. ICASSP, 2013 , pp. 8237-8241
    • Zweig, G.1    Makarychev, K.2
  • 36
    • 0032049073 scopus 로고    scopus 로고
    • Algorithms for bigram and trigram word clustering
    • S. Martin, J. Liermann, and H. Ney, "Algorithms for bigram and trigram word clustering," Speech Commun., vol. 24, no. 1, pp. 19-37, 1998.
    • (1998) Speech Commun. , vol.24 , Issue.1 , pp. 19-37
    • Martin, S.1    Liermann, J.2    Ney, H.3
  • 37
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar.
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 38
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 40
    • 0041965934 scopus 로고    scopus 로고
    • Learning precise timing with LSTM recurrent networks
    • F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, "Learning precise timing with LSTM recurrent networks," J. Mach. Learn. Res., vol. 3, pp. 115-143, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 115-143
    • Gers, F.A.1    Schraudolph, N.N.2    Schmidhuber, J.3
  • 41
    • 84910093676 scopus 로고    scopus 로고
    • RWTHLM-The RWTH Aachen University neural network language modeling toolkit
    • M. Sundermeyer, R. Schlüter, and H. Ney, "RWTHLM-The RWTH Aachen University neural network language modeling toolkit," in Proc. Interspeech, 2014, pp. 2093-2097.
    • Proc.Interspeech, 2014 , pp. 2093-2097
    • Sundermeyer, M.1    Schlüter, R.2    Ney, H.3
  • 44
  • 48
    • 0000635720 scopus 로고    scopus 로고
    • Progress in dynamic programming search for LVCSR
    • Aug.
    • H. Ney and S. Ortmanns, "Progress in dynamic programming search for LVCSR," Proc. IEEE, vol. 88, no. 8, pp. 1224-1240, Aug. 2000.
    • (2000) Proc. IEEE , vol.88 , Issue.8 , pp. 1224-1240
    • Ney, H.1    Ortmanns, S.2
  • 50
    • 84906215094 scopus 로고    scopus 로고
    • Multilingual hierarchical MRASTA features for ASR
    • Z. Tüske, R. Schlüter, and H. Ney, "Multilingual hierarchical MRASTA features for ASR," in Proc. Interspeech, 2013, pp. 2222-2226.
    • Proc.Interspeech, 2013 , pp. 2222-2226
    • Tüske, Z.1    Schlüter, R.2    Ney, H.3
  • 51
    • 0033709098 scopus 로고    scopus 로고
    • Tandem connectionist feature extraction for conventional HMM systems
    • H. Hermansky, D. P. Ellis, and S. Sharma, "Tandem connectionist feature extraction for conventional HMM systems," in Proc. ICASSP, 2000, pp. 1635-1638.
    • Proc. ICASSP, 2000 , pp. 1635-1638
    • Hermansky, H.1    Ellis, D.P.2    Sharma, S.3
  • 53
    • 0036722767 scopus 로고    scopus 로고
    • Testing the correlation of word error rate and perplexity
    • D. Klakow and J. Peters, "Testing the correlation of word error rate and perplexity," in Speech Commun., 2002, vol. 38, no. 1, pp. 19-28.
    • (2002) Speech Commun. , vol.38 , Issue.1 , pp. 19-28
    • Klakow, D.1    Peters, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.