-
1
-
-
0000241978
-
Two decades of statistical language modeling: Where do we go from here?
-
Aug.
-
R. Rosenfeld, "Two decades of statistical language modeling: Where do we go from here?," Proc. IEEE, vol. 88, no. 8, pp. 359-394, Aug. 2000.
-
(2000)
Proc. IEEE
, vol.88
, Issue.8
, pp. 359-394
-
-
Rosenfeld, R.1
-
2
-
-
0023312404
-
Estimation of probabilities from sparse data for the language model component of a speech recognizer
-
Mar.
-
S. M. Katz, "Estimation of probabilities from sparse data for the language model component of a speech recognizer," IEEE Trans. Acoust., Speech, Signal Process., vol. 35, no. 3, pp. 400-401, Mar. 1987.
-
(1987)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.35
, Issue.3
, pp. 400-401
-
-
Katz, S.M.1
-
3
-
-
0028996876
-
Improved backing-off for M-Gram language modeling
-
R. Kneser and H. Ney, "Improved backing-off for M-Gram language modeling," in Proc. ICASSP, 1995, pp. 181-184.
-
Proc. ICASSP, 1995
, pp. 181-184
-
-
Kneser, R.1
Ney, H.2
-
4
-
-
0033329799
-
An empirical study of smoothing techniques for language modeling
-
S. F. Chen and J. Goodman, "An empirical study of smoothing techniques for language modeling," Comput. Speech Lang., vol. 13, no. 4, pp. 359-393, 1999.
-
(1999)
Comput. Speech Lang.
, vol.13
, Issue.4
, pp. 359-393
-
-
Chen, S.F.1
Goodman, J.2
-
5
-
-
0012078715
-
Statistical language modeling using leaving-one-out
-
Norwell, MA, USA: Kluwer ch. 6
-
H. Ney, S. Martin, F. Wessel, S. Young, and G. Bloothooft, "Statistical language modeling using leaving-one-out," in Corpus-Based Methods in Language And Speech Processing. Norwell, MA, USA: Kluwer, 1997, ch. 6, pp. 174-207.
-
(1997)
Corpus-Based Methods in Language and Speech Processing
, pp. 174-207
-
-
Ney, H.1
Martin, S.2
Wessel, F.3
Young, S.4
Bloothooft, G.5
-
6
-
-
0009577944
-
A neural probabilistic language model
-
Y. Bengio and R. Ducharme, "A neural probabilistic language model,"in Proc. NIPS, 2000, vol. 13, pp. 933-938.
-
(2000)
Proc. NIPS
, vol.13
, pp. 933-938
-
-
Bengio, Y.1
Ducharme, R.2
-
7
-
-
33847610331
-
Continuous space language models
-
H. Schwenk, "Continuous space language models," Comput. Speech Lang., vol. 21, pp. 492-518, 2007.
-
(2007)
Comput. Speech Lang.
, vol.21
, pp. 492-518
-
-
Schwenk, H.1
-
8
-
-
84869479578
-
Structured output layer neural network language models for speech recognition
-
Jan.
-
H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon, "Structured output layer neural network language models for speech recognition,"IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 1, pp. 197-206, Jan. 2013.
-
(2013)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.21
, Issue.1
, pp. 197-206
-
-
Le, H.-S.1
Oparin, I.2
Allauzen, A.3
Gauvain, J.-L.4
Yvon, F.5
-
9
-
-
79959829092
-
Recurrent Neural Network Based Language model
-
T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur, "Recurrent neural network based language model," in Proc. Interspeech, 2010, pp. 1045-1048.
-
Proc. Interspeech, 2010
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Černocký, J.4
Khudanpur, S.5
-
11
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition - The shared views of four research groups
-
Nov.
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition- the shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
12
-
-
85032751521
-
Dynamic programming search for continuous speech recognition
-
Sep.
-
H. Ney and S. Ortmanns, "Dynamic programming search for continuous speech recognition," IEEE Signal Process. Mag., vol. 16, no. 5, pp. 64-83, Sep. 1999.
-
(1999)
IEEE Signal Process. Mag.
, vol.16
, Issue.5
, pp. 64-83
-
-
Ney, H.1
Ortmanns, S.2
-
13
-
-
84961291354
-
Translation modeling with bidirectional recurrent neural networks
-
M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney, "Translation modeling with bidirectional recurrent neural networks," in Proc. EMNLP, 2014, pp. 14-25.
-
Proc. EMNLP, 2014
, pp. 14-25
-
-
Sundermeyer, M.1
Alkhouli, T.2
Wuebker, J.3
Ney, H.4
-
14
-
-
80051643236
-
Extensions of recurrent neural network language model
-
T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, "Extensions of recurrent neural network language model," in Proc. ICASSP, 2011, pp. 5528-5531.
-
Proc. ICASSP, 2011
, pp. 5528-5531
-
-
Mikolov, T.1
Kombrink, S.2
Burget, L.3
Černocký, J.4
Khudanpur, S.5
-
15
-
-
85075436378
-
Deep neural network language models
-
E. Ar soy, T. N. Sainath, B. Kingsbury, and B. Ramabhadran, "Deep neural network language models," in Proc. NAACL-HLT Workshop, 2012, pp. 20-28.
-
Proc. NAACL-HLT Workshop, 2012
, pp. 20-28
-
-
Ar Soy, E.1
Sainath, T.N.2
Kingsbury, B.3
Ramabhadran, B.4
-
16
-
-
84867615076
-
Performance analysis of neural networks in combination with -gram language models
-
I. Oparin, M. Sundermeyer, H. Ney, and J.-L. Gauvain, "Performance analysis of neural networks in combination with -gram language models," in Proc. ICASSP, 2012, pp. 5005-5008.
-
Proc. ICASSP, 2012
, pp. 5005-5008
-
-
Oparin, I.1
Sundermeyer, M.2
Ney, H.3
Gauvain, J.-L.4
-
17
-
-
84890480734
-
Comparison of feedforward and recurrent neural network language models
-
M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg, R. Schlüter, and H. Ney, "Comparison of feedforward and recurrent neural network language models," in Proc. ICASSP, 2013, pp. 8430-8434.
-
Proc. ICASSP, 2013
, pp. 8430-8434
-
-
Sundermeyer, M.1
Oparin, I.2
Gauvain, J.-L.3
Freiberg, B.4
Schlüter, R.5
Ney, H.6
-
18
-
-
84906217753
-
Measuring the influence of long range dependencies with neural network language models
-
H. S. Le, A. Allauzen, and F. Yvon, "Measuring the influence of long range dependencies with neural network language models," in Proc. NAACL-HLT Workshop, 2012, pp. 1-10.
-
Proc. NAACL-HLT Workshop, 2012
, pp. 1-10
-
-
Le, H.S.1
Allauzen, A.2
Yvon, F.3
-
19
-
-
84865804529
-
Recurrent neural network based Language modeling in meeting recognition
-
S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, "Recurrent neural network based language modeling in meeting recognition," in Proc. Interspeech, 2011, pp. 2877-2880.
-
Proc. Interspeech, 2011
, pp. 2877-2880
-
-
Kombrink, S.1
Mikolov, T.2
Karafiát, M.3
Burget, L.4
-
20
-
-
84906240855
-
Prefix tree based N-best list re-scoring for recurrent neural network language model used in speech recognition system
-
Y. Si, Q. Zhang, T. Li, J. Pan, and A. Yan, "Prefix tree based N-best list re-scoring for recurrent neural network language model used in speech recognition system," in Proc. Interspeech, 2013, pp. 3419-3423.
-
Proc. Interspeech, 2013
, pp. 3419-3423
-
-
Si, Y.1
Zhang, Q.2
Li, T.3
Pan, J.4
Yan, A.5
-
21
-
-
0039452635
-
Recognition performance of a structured language model
-
C. Chelba and F. Jelinek, "Recognition performance of a structured language model," in Proc. Eurospeech, 1999, vol. 4, pp. 1567-1570.
-
(1999)
Proc.Eurospeech
, vol.4
, pp. 1567-1570
-
-
Chelba, C.1
Jelinek, F.2
-
22
-
-
80053284315
-
A fast re-scoring strategy to capture long-distance dependencies
-
A. Deoras, T. Mikolov, and K. Church, "A fast re-scoring strategy to capture long-distance dependencies," in Proc. EMLNP, 2011, pp. 1116-1127.
-
Proc. EMLNP, 2011
, pp. 1116-1127
-
-
Deoras, A.1
Mikolov, T.2
Church, K.3
-
23
-
-
84926321124
-
Joint language and translation modeling with recurrent neural networks
-
M. Auli, M. Galley, C. Quirk, and G. Zweig, "Joint language and translation modeling with recurrent neural networks," in Proc. EMNLP, 2013, pp. 1044-1054.
-
Proc. EMNLP, 2013
, pp. 1044-1054
-
-
Auli, M.1
Galley, M.2
Quirk, C.3
Zweig, G.4
-
24
-
-
84905240726
-
Efficient lattice rescoring using recurrent neural network language models
-
X. Liu, Y. Wang, X. Chen, M. J. F. Gales, and P. C. Woodland, "Efficient lattice rescoring using recurrent neural network language models," in Proc. ICASSP, 2014, pp. 4941-4945.
-
Proc. ICASSP, 2014
, pp. 4941-4945
-
-
Liu, X.1
Wang, Y.2
Chen, X.3
Gales, M.J.F.4
Woodland, P.C.5
-
25
-
-
84910060565
-
Lattice decoding and rescoring with long-span neural network language models
-
M. Sundermeyer, Z. Tüske, R. Schlüter, and H. Ney, "Lattice decoding and rescoring with long-span neural network language models," in Proc. Interspeech, 2014, pp. 661-665.
-
Proc.Interspeech, 2014
, pp. 661-665
-
-
Sundermeyer, M.1
Tüske, Z.2
Schlüter, R.3
Ney, H.4
-
26
-
-
84867332205
-
Use of contexts in language model interpolation and adaptation
-
X. Liu, M. J. F. Gales, and P. C. Woodland, "Use of contexts in language model interpolation and adaptation," Comput. Speech Lang., vol. 27, no. 1, pp. 301-321, 2013.
-
(2013)
Comput. Speech Lang.
, vol.27
, Issue.1
, pp. 301-321
-
-
Liu, X.1
Gales, M.J.F.2
Woodland, P.C.3
-
27
-
-
0034296009
-
Finding consensus in speech recognition: Word error minimization and other applications of confusion networks
-
L. Mangu, E. Brill, and A. Stolcke, "Finding consensus in speech recognition: Word error minimization and other applications of confusion networks,"Comput. Speech Lang., vol. 14, no. 4, pp. 373-400, 2000.
-
(2000)
Comput. Speech Lang.
, vol.14
, Issue.4
, pp. 373-400
-
-
Mangu, L.1
Brill, E.2
Stolcke, A.3
-
28
-
-
84905229914
-
Cache based recurrent neural network language model inference for first pass speech recognition
-
Z. Huang, G. Zweig, and B. Dumoulin, "Cache based recurrent neural network language model inference for first pass speech recognition,"in Proc. ICASSP, 2015, pp. 6404-6408.
-
Proc. ICASSP, 2015
, pp. 6404-6408
-
-
Huang, Z.1
Zweig, G.2
Dumoulin, B.3
-
29
-
-
84924041348
-
Real-time one-pass decoding with recurrent neural network language model for speech recognition
-
T. Hori, Y. Kubo, and A. Nakamura, "Real-time one-pass decoding with recurrent neural network language model for speech recognition,"in Proc. ICASSP, 2015, pp. 6414-6418.
-
Proc. ICASSP, 2015
, pp. 6414-6418
-
-
Hori, T.1
Kubo, Y.2
Nakamura, A.3
-
30
-
-
4243335438
-
Single-layer networks
-
Oxford, U.K.: Oxford Univ. Press ch. 3
-
C. M. Bishop, "Single-layer networks," in Neural Networks for Pattern Recognition . Oxford, U.K.: Oxford Univ. Press, 1995, ch. 3, pp. 77-115.
-
(1995)
Neural Networks for Pattern Recognition
, pp. 77-115
-
-
Bishop, C.M.1
-
31
-
-
0034856455
-
Classes for fast maximum entropy training
-
J. Goodman, "Classes for fast maximum entropy training," in Proc. ICASSP, 2001, pp. 561-564.
-
Proc. ICASSP, 2001
, pp. 561-564
-
-
Goodman, J.1
-
33
-
-
84910089104
-
Forming word classes by statistical clustering for statistical language modelling
-
R. Kneser and H. Ney, "Forming word classes by statistical clustering for statistical language modelling," in Proc. QUALICO, 1991, pp. 221-226.
-
Proc. QUALICO, 1991
, pp. 221-226
-
-
Kneser, R.1
Ney, H.2
-
34
-
-
85022919385
-
Class-based n-gram models of natural language
-
P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai, "Class-based n-gram models of natural language," Comput. Linguist., vol. 18, no. 4, pp. 467-479, 1992.
-
(1992)
Comput. Linguist.
, vol.18
, Issue.4
, pp. 467-479
-
-
Brown, P.F.1
DeSouza, P.V.2
Mercer, R.L.3
Della Pietra, V.J.4
Lai, J.C.5
-
35
-
-
84890477112
-
Speed regularization and optimality in word classing
-
G. Zweig and K. Makarychev, "Speed regularization and optimality in word classing," in Proc. ICASSP, 2013, pp. 8237-8241.
-
Proc. ICASSP, 2013
, pp. 8237-8241
-
-
Zweig, G.1
Makarychev, K.2
-
36
-
-
0032049073
-
Algorithms for bigram and trigram word clustering
-
S. Martin, J. Liermann, and H. Ney, "Algorithms for bigram and trigram word clustering," Speech Commun., vol. 24, no. 1, pp. 19-37, 1998.
-
(1998)
Speech Commun.
, vol.24
, Issue.1
, pp. 19-37
-
-
Martin, S.1
Liermann, J.2
Ney, H.3
-
37
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Mar.
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
38
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
40
-
-
0041965934
-
Learning precise timing with LSTM recurrent networks
-
F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, "Learning precise timing with LSTM recurrent networks," J. Mach. Learn. Res., vol. 3, pp. 115-143, 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 115-143
-
-
Gers, F.A.1
Schraudolph, N.N.2
Schmidhuber, J.3
-
41
-
-
84910093676
-
RWTHLM-The RWTH Aachen University neural network language modeling toolkit
-
M. Sundermeyer, R. Schlüter, and H. Ney, "RWTHLM-The RWTH Aachen University neural network language modeling toolkit," in Proc. Interspeech, 2014, pp. 2093-2097.
-
Proc.Interspeech, 2014
, pp. 2093-2097
-
-
Sundermeyer, M.1
Schlüter, R.2
Ney, H.3
-
42
-
-
84872521733
-
Stochastic gradient descent tricks
-
New York, NY, USA: Springer ch. 18
-
nd Ed. ed. New York, NY, USA: Springer, 2012, ch. 18, pp. 421-436.
-
(2012)
Neural Networks: Tricks of the Trade, 2nd Ed. Ed.
, pp. 421-436
-
-
Bottou, L.1
Montavon, G.2
Orr, G.B.3
Müller, K.-R.4
-
43
-
-
0000646059
-
Learning internal representations by error propagation
-
Cambridge, MA, USA: MIT Press
-
D. E. Rumelhart, G. E. Hinton, R. J. Williams, J. L. McClelland, and D. E. Rumelhart, "Learning internal representations by error propagation,"in the PDP Research Group, Parallel Distributed Processing. Cambridge, MA, USA: MIT Press, 1986, pp. 318-362.
-
(1986)
The PDP Research Group, Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
McClelland, J.L.4
Rumelhart, D.E.5
-
44
-
-
0001765578
-
Gra-dient- Based learning algorithms for recurrent networks and their computational complexity
-
Hove, U.K.: Psychology Press
-
R. J. Williams, D. Zipser, Y. Chauvain, and D. E. Rumelhart, "Gra-dient- based learning algorithms for recurrent networks and their computational complexity," in Backpropagation: Theory, Architectures, and Applications. Hove, U.K.: Psychology Press, 1995, pp. 433-486.
-
(1995)
Backpropagation: Theory, Architectures, and Applications
, pp. 433-486
-
-
Williams, R.J.1
Zipser, D.2
Chauvain, Y.3
Rumelhart, D.E.4
-
45
-
-
84901784231
-
RNNLM-recurrent neural network language modeling toolkit
-
T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Černocký, "RNNLM-recurrent neural network language modeling toolkit," in Proc. ASRU, 2011, pp. 196-201.
-
Proc. ASRU, 2011
, pp. 196-201
-
-
Mikolov, T.1
Kombrink, S.2
Deoras, A.3
Burget, L.4
Černocký, J.5
-
46
-
-
84858966958
-
Strategies for training large scale neural network language models
-
T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky, "Strategies for training large scale neural network language models," in Proc. ASRU, 2011, pp. 196-201.
-
Proc. ASRU, 2011
, pp. 196-201
-
-
Mikolov, T.1
Deoras, A.2
Povey, D.3
Burget, L.4
Cernocky, J.5
-
48
-
-
0000635720
-
Progress in dynamic programming search for LVCSR
-
Aug.
-
H. Ney and S. Ortmanns, "Progress in dynamic programming search for LVCSR," Proc. IEEE, vol. 88, no. 8, pp. 1224-1240, Aug. 2000.
-
(2000)
Proc. IEEE
, vol.88
, Issue.8
, pp. 1224-1240
-
-
Ney, H.1
Ortmanns, S.2
-
49
-
-
80051609102
-
The RWTH 2010 QUAERO ASR evaluation system for English, French, and German
-
M. Sundermeyer, M. Nuß baum-Thom, S. Wiesler, C. Plahl, A. El-Desoky Mousa, S. Hahn, D. Nolden, R. Schlüter, and H. Ney, "The RWTH 2010 QUAERO ASR evaluation system for English, French, and German," in Proc. ICASSP, 2011, pp. 2212-2215.
-
Proc. ICASSP, 2011
, pp. 2212-2215
-
-
Sundermeyer, M.1
Nuß Baum-Thom, M.2
Wiesler, S.3
Plahl, C.4
El-Desoky Mousa, A.5
Hahn, S.6
Nolden, D.7
Schlüter, R.8
Ney, H.9
-
50
-
-
84906215094
-
Multilingual hierarchical MRASTA features for ASR
-
Z. Tüske, R. Schlüter, and H. Ney, "Multilingual hierarchical MRASTA features for ASR," in Proc. Interspeech, 2013, pp. 2222-2226.
-
Proc.Interspeech, 2013
, pp. 2222-2226
-
-
Tüske, Z.1
Schlüter, R.2
Ney, H.3
-
51
-
-
0033709098
-
Tandem connectionist feature extraction for conventional HMM systems
-
H. Hermansky, D. P. Ellis, and S. Sharma, "Tandem connectionist feature extraction for conventional HMM systems," in Proc. ICASSP, 2000, pp. 1635-1638.
-
Proc. ICASSP, 2000
, pp. 1635-1638
-
-
Hermansky, H.1
Ellis, D.P.2
Sharma, S.3
-
52
-
-
84878410921
-
RASR - The RWTH Aachen University open source speech recognition toolkit
-
D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske, S. Wiesler, R. Schlüter, and H. Ney, "RASR-the RWTH Aachen University open source speech recognition toolkit," in Proc. ASRU, 2011.
-
Proc. ASRU, 2011
-
-
Rybach, D.1
Hahn, S.2
Lehnen, P.3
Nolden, D.4
Sundermeyer, M.5
Tüske, Z.6
Wiesler, S.7
Schlüter, R.8
Ney, H.9
-
53
-
-
0036722767
-
Testing the correlation of word error rate and perplexity
-
D. Klakow and J. Peters, "Testing the correlation of word error rate and perplexity," in Speech Commun., 2002, vol. 38, no. 1, pp. 19-28.
-
(2002)
Speech Commun.
, vol.38
, Issue.1
, pp. 19-28
-
-
Klakow, D.1
Peters, J.2
|