메뉴 건너뛰기




Volumn 31, Issue 9, 2010, Pages 905-911

Nonnegative Matrix Factorization on Orthogonal Subspace

Author keywords

Clustering; Nonnegative Matrix Factorization; Orthogonality

Indexed keywords

CLUSTERING ACCURACY; DOCUMENT DATASETS; EUCLIDEAN DISTANCE; FACIAL IMAGES; GENERALIZED KULLBACK-LEIBLER DIVERGENCE; INPUT DATAS; NONNEGATIVE MATRIX FACTORIZATION; OBJECTIVE FUNCTIONS; ORTHOGONAL SUBSPACES; ORTHOGONALITY; ORTHOGONALITY CONSTRAINTS; PRIOR INFORMATION;

EID: 77951094313     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.12.023     Document Type: Article
Times cited : (93)

References (22)
  • 2
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Chen Y., Rege M., Dong M., and Hua J. Non-negative matrix factorization for semi-supervised data clustering. Knowl. Inform. Systems 17 3 (2008) 355-379
    • (2008) Knowl. Inform. Systems , vol.17 , Issue.3 , pp. 355-379
    • Chen, Y.1    Rege, M.2    Dong, M.3    Hua, J.4
  • 3
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process. 36 3 (1994) 287-314
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 4
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • Ding, C., He, X., Simon, H.D., 2005. On the equivalence of nonnegative matrix factorization and spectral clustering. In: SIAM Data Mining Conf.
    • (2005) SIAM Data Mining Conf
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 6
    • 77951121925 scopus 로고
    • Nonlinear programming: A historical view
    • Kuhn H.W. Nonlinear programming: A historical view. SIGMAP Bull. 31 (1982) 6-18
    • (1982) SIGMAP Bull. , Issue.31 , pp. 6-18
    • Kuhn, H.W.1
  • 7
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., and Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 401 6755 (1999) 788-791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 8
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee, D.D., Seung, H.S., 2001. Algorithms for non-negative matrix factorization. In: NIPS. pp. 556-562.
    • (2001) NIPS , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 9
    • 54049130028 scopus 로고    scopus 로고
    • Clustering based on matrix approximation: A unifying view
    • Li T. Clustering based on matrix approximation: A unifying view. Knowl. Inform. Systems 17 1 (2008) 1-15
    • (2008) Knowl. Inform. Systems , vol.17 , Issue.1 , pp. 1-15
    • Li, T.1
  • 11
    • 34547302100 scopus 로고    scopus 로고
    • Non-negative matrix factorization with orthogonality constraints and its application to raman spectroscopy
    • Li H., Adali T., Wang W., Emge D., and Cichocki A. Non-negative matrix factorization with orthogonality constraints and its application to raman spectroscopy. J. VLSI Signal Process. Systems 48 1-2 (2007) 83-97
    • (2007) J. VLSI Signal Process. Systems , vol.48 , Issue.1-2 , pp. 83-97
    • Li, H.1    Adali, T.2    Wang, W.3    Emge, D.4    Cichocki, A.5
  • 12
    • 2442624378 scopus 로고    scopus 로고
    • Non-negative matrix factorization based methods for object recognition
    • Liu W., and Zheng N. Non-negative matrix factorization based methods for object recognition. Pattern Recognition Lett. 25 8 (2004) 893-897
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.8 , pp. 893-897
    • Liu, W.1    Zheng, N.2
  • 15
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P., and Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5 2 (1994) 111-126
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 16
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2 6 (1901) 559-572
    • (1901) Philos. Mag. , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 17
    • 67349143735 scopus 로고    scopus 로고
    • Characterization and evaluation of similarity measures for pairs of clusterings
    • Pfitzner D., Leibbrandt R., and Powers D. Characterization and evaluation of similarity measures for pairs of clusterings. Knowl. Inform. Systems 19 3 (2009) 361-394
    • (2009) Knowl. Inform. Systems , vol.19 , Issue.3 , pp. 361-394
    • Pfitzner, D.1    Leibbrandt, R.2    Powers, D.3
  • 21
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao Y., and Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Mach. Learn. 55 3 (2004) 311-331
    • (2004) Mach. Learn. , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 22
    • 24944501423 scopus 로고    scopus 로고
    • Generative model-based document clustering: A comparative study
    • Zhong S., and Ghosh J. Generative model-based document clustering: A comparative study. Knowl. Inform. Systems 8 3 (2005) 374-384
    • (2005) Knowl. Inform. Systems , vol.8 , Issue.3 , pp. 374-384
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.