-
1
-
-
64049083335
-
A gripping tale of ribosomal frameshifting: Extragenic suppressors of frameshift mutations spotlight P-site realignment
-
Atkins J. F., & Bjoerk G. R. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol. Mol. Biol. Rev. 73, 178-210 (2009
-
(2009)
Microbiol. Mol. Biol. Rev
, vol.73
, pp. 178-210
-
-
Atkins, J.F.1
Bjoerk, G.R.2
-
2
-
-
0014966535
-
Suppressors of frameshift mutations in Salmonella typhimurium
-
Riddle D. L., & Roth J. R. Suppressors of frameshift mutations in Salmonella typhimurium. J. Mol. Biol. 54, 131-144 (1970
-
(1970)
J. Mol. Biol
, vol.54
, pp. 131-144
-
-
Riddle, D.L.1
Roth, J.R.2
-
3
-
-
0015502296
-
Externally suppressible proline quadruplet CCCU
-
Yourno J., & Kohno T. Externally suppressible proline quadruplet CCCU. Science 175, 650-652 (1972
-
(1972)
Science
, vol.175
, pp. 650-652
-
-
Yourno, J.1
Kohno, T.2
-
4
-
-
0347783961
-
Frameshift suppression: A nucleotide addition in the anticodon of a glycine transfer RNA
-
Riddle D. L., & Carbon J. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat. New Biol. 242, 230-234 (1973
-
(1973)
Nat. New Biol
, vol.242
, pp. 230-234
-
-
Riddle, D.L.1
Carbon, J.2
-
5
-
-
0026681537
-
Insertion (sufB in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNAPro2 from Salmonella typhimurium induces suppression of frameshift mutations
-
Sroga G. E., Nemoto F., Kuchino Y., & Bjoerk G. R. Insertion (sufB) in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNAPro2 from Salmonella typhimurium induces suppression of frameshift mutations. Nucleic Acids Res. 20, 3463-3469 (1992
-
(1992)
Nucleic Acids Res
, vol.20
, pp. 3463-3469
-
-
Sroga, G.E.1
Nemoto, F.2
Kuchino, Y.3
Bjoerk, G.R.4
-
6
-
-
0019934548
-
Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae
-
Cummins C. M., Donahue T. F., & Culbertson M. R. Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 79, 3565-3569 (1982
-
(1982)
Proc. Natl. Acad. Sci. USA
, vol.79
, pp. 3565-3569
-
-
Cummins, C.M.1
Donahue, T.F.2
Culbertson, M.R.3
-
7
-
-
0021740710
-
Codon recognition during frameshift suppression in Saccharomyces cerevisiae
-
Gaber R. F., & Culbertson M. R. Codon recognition during frameshift suppression in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2052-2061 (1984
-
(1984)
Mol. Cell. Biol
, vol.4
, pp. 2052-2061
-
-
Gaber, R.F.1
Culbertson, M.R.2
-
8
-
-
0019414583
-
Four-base codons ACCA ACCU and ACCC are recognized by frameshift suppressor suf
-
Bossi L., & Roth J. R. Four-base codons ACCA, ACCU, and ACCC are recognized by frameshift suppressor suf. J. Cell 25, 489-496 (1981
-
(1981)
J. Cell
, vol.25
, pp. 489-496
-
-
Bossi, L.1
Roth, J.R.2
-
9
-
-
0021733728
-
Suppressor sufJ: A novel type of tRNA mutant that induces translational frameshifting
-
Bossi L., & Smith D. M. Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting. Proc. Natl. Acad. Sci. USA 81, 6105-6109 (1984
-
(1984)
Proc. Natl. Acad. Sci. USA
, vol.81
, pp. 6105-6109
-
-
Bossi, L.1
Smith, D.M.2
-
10
-
-
2442659130
-
An expanded genetic code with a functional quadruplet codon
-
Anderson J. C., et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566-7571 (2004
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 7566-7571
-
-
Anderson, J.C.1
-
11
-
-
33644890438
-
Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs
-
Taki M., Matsushita J., & Sisido M. Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs. Chem Bio Chem 7, 425-428 (2006
-
(2006)
Chem Bio Chem
, vol.7
, pp. 425-428
-
-
Taki, M.1
Matsushita, J.2
Sisido, M.3
-
12
-
-
77949772551
-
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
-
Neumann H., Wang K., Davis L., Garcia-Alai M., & Chin J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441-444 (2010
-
(2010)
Nature
, vol.464
, pp. 441-444
-
-
Neumann, H.1
Wang, K.2
Davis, L.3
Garcia-Alai, M.4
Chin, J.W.5
-
13
-
-
33745015242
-
In vivo incorporation of multiple unnatural amino acids through nonsense, and frameshift suppression
-
Rodriguez E. A., Lester H. A., & Dougherty D. A. In vivo incorporation of multiple unnatural amino acids through nonsense, and frameshift suppression. Proc. Natl. Acad. Sci. USA 103, 8650-8655 (2006
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 8650-8655
-
-
Rodriguez, E.A.1
Lester, H.A.2
Dougherty, D.A.3
-
14
-
-
84880555518
-
An expanded genetic code in mammalian cells with a functional quadruplet codon
-
Niu W., Schultz P. G., & Guo J. An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem. Biol. 8, 1640-1645 (2013
-
(2013)
ACS Chem. Biol
, vol.8
, pp. 1640-1645
-
-
Niu, W.1
Schultz, P.G.2
Guo, J.3
-
15
-
-
77953643054
-
Adding new chemistries to the genetic code
-
Liu C. C., & Schultz P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444 (2010
-
(2010)
Annu. Rev. Biochem
, vol.79
, pp. 413-444
-
-
Liu, C.C.1
Schultz, P.G.2
-
16
-
-
84860211688
-
Reprogramming the genetic code
-
Chin J. W. Reprogramming the genetic code. Science 336, 428-429 (2012
-
(2012)
Science
, vol.336
, pp. 428-429
-
-
Chin, J.W.1
-
17
-
-
84887075652
-
Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids
-
Niu W., & Guo J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Mol. BioSyst. 9, 2961-2970 (2013
-
(2013)
Mol. BioSyst
, vol.9
, pp. 2961-2970
-
-
Niu, W.1
Guo, J.2
-
18
-
-
0023623660
-
Reading frame selection, and transfer RNA anticodon loop stacking
-
Curran J. F., & Yarus M. Reading frame selection, and transfer RNA anticodon loop stacking. Science 238, 1545-1550 (1987
-
(1987)
Science
, vol.238
, pp. 1545-1550
-
-
Curran, J.F.1
Yarus, M.2
-
19
-
-
33745657451
-
Translocation of a tRNA with an extended anticodon through the ribosome
-
Phelps S. S., et al. Translocation of a tRNA with an extended anticodon through the ribosome. J. Mol. Biol. 360, 610-622 (2006
-
(2006)
J. Mol. Biol
, vol.360
, pp. 610-622
-
-
Phelps, S.S.1
-
20
-
-
33745653285
-
Recognition, and positioning of mRNA in the ribosome by tRNAs with expanded anticodons
-
Walker S. E., & Fredrick K. Recognition, and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J. Mol. Biol. 360, 599-609 (2006
-
(2006)
J. Mol. Biol
, vol.360
, pp. 599-609
-
-
Walker, S.E.1
Fredrick, K.2
-
21
-
-
59349109389
-
Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code
-
Bernhardt H. S., & Tate W. P. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code. Biol. Direct 3, 53 (2008
-
(2008)
Biol. Direct
, vol.3
, pp. 53
-
-
Bernhardt, H.S.1
Tate, W.P.2
-
22
-
-
0015793073
-
Nucleotide sequence of the GGG-specific glycine transfer ribonucleic acid of Escherichia coli, and of Salmonella typhimurium
-
Hill C. W., Combriato G., Steinhart W., Riddle D. L., & Carbon J. Nucleotide sequence of the GGG-specific glycine transfer ribonucleic acid of Escherichia coli, and of Salmonella typhimurium. J. Biol. Chem. 248, 4252-4262 (1973
-
(1973)
J. Biol. Chem
, vol.248
, pp. 4252-4262
-
-
Hill, C.W.1
Combriato, G.2
Steinhart, W.3
Riddle, D.L.4
Carbon, J.5
-
23
-
-
0034724561
-
Quadruplet codons: Implications for code expansion, and the specification of translation step size
-
Moore B., Persson B. C., Nelson C. C., Gesteland R. F., & Atkins J. F. Quadruplet codons: implications for code expansion, and the specification of translation step size. J. Mol. Biol. 298, 195-209 (2000
-
(2000)
J. Mol. Biol
, vol.298
, pp. 195-209
-
-
Moore, B.1
Persson, B.C.2
Nelson, C.C.3
Gesteland, R.F.4
Atkins, J.F.5
-
24
-
-
0035970290
-
Expanding the genetic code: Selection of efficient suppressors of four-base codons, and identification of shifty four-base codons with a library approach in Escherichia coli
-
Magliery T. J., Anderson J. C., & Schultz P. G. Expanding the genetic code: selection of efficient suppressors of four-base codons, and identification of shifty four-base codons with a library approach in Escherichia coli. J. Mol. Biol. 307, 755-769 (2001
-
(2001)
J. Mol. Biol
, vol.307
, pp. 755-769
-
-
Magliery, T.J.1
Anderson, J.C.2
Schultz, P.G.3
-
25
-
-
0036008851
-
Exploring the limits of codon, and anticodon size
-
Anderson J. C., Magliery T. J., & Schultz P. G. Exploring the limits of codon, and anticodon size. Chem. Biol. 9, 237-244 (2002
-
(2002)
Chem. Biol
, vol.9
, pp. 237-244
-
-
Anderson, J.C.1
Magliery, T.J.2
Schultz, P.G.3
-
26
-
-
34249008095
-
Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit
-
Dunham C. M., et al. Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. RNA 13, 817-823 (2007
-
(2007)
RNA
, vol.13
, pp. 817-823
-
-
Dunham, C.M.1
-
27
-
-
0032015813
-
A new model for phenotypic suppression of frameshift mutations by mutant tRNAs
-
Qian Q., et al. A new model for phenotypic suppression of frameshift mutations by mutant tRNAs. Mol. Cell 1, 471-482 (1998
-
(1998)
Mol. Cell
, vol.1
, pp. 471-482
-
-
Qian, Q.1
-
28
-
-
0021731777
-
Escherichia coli ribosomes translate in vivo with variable rate
-
Pedersen S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3, 2895-2898 (1984
-
(1984)
EMBO J.
, vol.3
, pp. 2895-2898
-
-
Pedersen, S.1
-
29
-
-
0031567788
-
Structural alterations far from the anticodon of the trnagggpro of salmonella typhimurium induce + 1 frameshifting at the peptidyl-site
-
Qian Q., & Bjork G. R. Structural alterations far from the anticodon of the tRNAGGGPro of Salmonella typhimurium induce + 1 frameshifting at the peptidyl-site. J. Mol. Biol. 273, 978-992 (1997
-
(1997)
J. Mol. Biol
, vol.273
, pp. 978-992
-
-
Qian, Q.1
Bjork, G.R.2
-
30
-
-
84907227935
-
Structural insights into + 1 frameshifting promoted by expanded or modification-deficient anticodon stem loops
-
Maehigashi T., Dunkle J. A., Miles S. J., & Dunham C. M. Structural insights into + 1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc. Natl. Acad. Sci. USA 111, 12740-12745 (2014
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 12740-12745
-
-
Maehigashi, T.1
Dunkle, J.A.2
Miles, S.J.3
Dunham, C.M.4
-
31
-
-
58149087082
-
The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance
-
Naesvall S. J., Nilsson K., & Bjoerk G. R. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance. J. Mol. Biol. 385, 350-367 (2009
-
(2009)
J. Mol. Biol
, vol.385
, pp. 350-367
-
-
Naesvall, S.J.1
Nilsson, K.2
Bjoerk, G.R.3
-
32
-
-
0343665638
-
How translational accuracy influences reading frame maintenance
-
Farabaugh P. J., & Bjork G. R. How translational accuracy influences reading frame maintenance. EMBO J. 18, 1427-1434 (1999
-
(1999)
EMBO J.
, vol.18
, pp. 1427-1434
-
-
Farabaugh, P.J.1
Bjork, G.R.2
-
33
-
-
4444346213
-
On the role of the starved codon, and the takeoff site in ribosome bypassing in Escherichia coli
-
Gallant J., et al. On the role of the starved codon, and the takeoff site in ribosome bypassing in Escherichia coli. J. Mol. Biol. 342, 713-724 (2004
-
(2004)
J. Mol. Biol
, vol.342
, pp. 713-724
-
-
Gallant, J.1
-
34
-
-
0025303605
-
Ribosomal frameshifting in the yeast retrotransposon Ty: TRNAs induce slippage on a 7 nucleotide minimal site
-
Belcourt M. F., & Farabaugh P. J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62, 339-352 (1990
-
(1990)
Cell
, vol.62
, pp. 339-352
-
-
Belcourt, M.F.1
Farabaugh, P.J.2
-
35
-
-
0033629418
-
Translational frameshifting: Implications for the mechanism of translational frame maintenance
-
Farabaugh P. J. Translational frameshifting: Implications for the mechanism of translational frame maintenance. Prog. Nucleic Acid Res. Mol. Biol. 64, 131-170 (2000
-
(2000)
Prog. Nucleic Acid Res. Mol. Biol
, vol.64
, pp. 131-170
-
-
Farabaugh, P.J.1
-
36
-
-
84899055551
-
Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labeling, and FRET
-
Wang K., et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labeling, and FRET. Nat. Chem. 6, 393-403 (2014
-
(2014)
Nat. Chem
, vol.6
, pp. 393-403
-
-
Wang, K.1
-
37
-
-
84885791219
-
Genomically recoded organisms expand biological functions
-
Lajoie M. J., et al. Genomically recoded organisms expand biological functions. Science 342, 357-360 (2013
-
(2013)
Science
, vol.342
, pp. 357-360
-
-
Lajoie, M.J.1
-
38
-
-
84905981008
-
A bacterial strain with a unique quadruplet codon specifying non-native amino acids
-
Chatterjee A., Lajoie M. J., Xiao H., Church G. M., & Schultz P. G. A bacterial strain with a unique quadruplet codon specifying non-native amino acids. Chem Bio Chem 15, 1782-1786 (2014
-
(2014)
Chem Bio Chem
, vol.15
, pp. 1782-1786
-
-
Chatterjee, A.1
Lajoie, M.J.2
Xiao, H.3
Church, G.M.4
Schultz, P.G.5
-
39
-
-
61349139930
-
Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality
-
Nozawa K., et al. Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457, 1163-1167 (2009
-
(2009)
Nature
, vol.457
, pp. 1163-1167
-
-
Nozawa, K.1
-
40
-
-
0025619241
-
Ribosomal frameshifting from - 2 to + 50 nucleotides
-
Weiss R. B., Dunn D. M., Atkins J. F., & Gesteland R. F. Ribosomal frameshifting from - 2 to + 50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol. 39, 159-183 (1990
-
(1990)
Prog. Nucleic Acid Res. Mol. Biol
, vol.39
, pp. 159-183
-
-
Weiss, R.B.1
Dunn, D.M.2
Atkins, J.F.3
Gesteland, R.F.4
-
41
-
-
56049106840
-
Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification
-
Yanagisawa T., et al. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem. Biol. 15, 1187-1197 (2008
-
(2008)
Chem. Biol
, vol.15
, pp. 1187-1197
-
-
Yanagisawa, T.1
-
42
-
-
84894148049
-
Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells
-
Nguyen D. P., et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240-2243 (2014
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 2240-2243
-
-
Nguyen, D.P.1
-
43
-
-
84908626417
-
Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized Pyrrolysyl tRNA Synthetase/tRNA expression, and engineered eRF1
-
Schmied W. H., Elsasser S. J., Uttamapinant C., & Chin J. W. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized Pyrrolysyl tRNA Synthetase/tRNA expression, and engineered eRF1. J. Am. Chem. Soc. 136, 15577-15583 (2014
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 15577-15583
-
-
Schmied, W.H.1
Elsasser, S.J.2
Uttamapinant, C.3
Chin, J.W.4
-
44
-
-
79961125738
-
Probing protein-protein interactions with a genetically encoded photocrosslinking amino acid
-
Ai H.-W., Shen W., Sagi A., Chen P. R., & Schultz P. G. Probing protein-protein interactions with a genetically encoded photocrosslinking amino acid. Chem Bio Chem 12, 1854-1857 (2011
-
(2011)
Chem Bio Chem
, vol.12
, pp. 1854-1857
-
-
Ai, H.-W.1
Shen, W.2
Sagi, A.3
Chen, P.R.4
Schultz, P.G.5
-
45
-
-
70349783657
-
A facile system for encoding unnatural amino acids in mammalian cells
-
Chen P. R., et al. A facile system for encoding unnatural amino acids in mammalian cells. Angew. Chem., Int. Ed. 48, 4052-4055 (2009
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 4052-4055
-
-
Chen, P.R.1
-
46
-
-
84911474578
-
Structural insights into translational recoding by frameshift suppressor tRNASuf
-
Fagan C. E., Maehigashi T., Dunkle J. A., Miles S. J., & Dunham C. M. Structural insights into translational recoding by frameshift suppressor tRNASuf. J. RNA 20, 1944-1954 (2014
-
(2014)
J. RNA
, vol.20
, pp. 1944-1954
-
-
Fagan, C.E.1
Maehigashi, T.2
Dunkle, J.A.3
Miles, S.J.4
Dunham, C.M.5
-
47
-
-
39749138785
-
A structural understanding of the dynamic ribosome machine
-
Steitz T. A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242-253 (2008
-
(2008)
Nat. Rev. Mol. Cell Biol
, vol.9
, pp. 242-253
-
-
Steitz, T.A.1
-
48
-
-
33747871555
-
TRNA residues that have coevolved with their anticodon to ensure uniform, and accurate codon recognition
-
Olejniczak M., & Uhlenbeck O. C. tRNA residues that have coevolved with their anticodon to ensure uniform, and accurate codon recognition. Biochimie 88, 943-950 (2006
-
(2006)
Biochimie
, vol.88
, pp. 943-950
-
-
Olejniczak, M.1
Uhlenbeck, O.C.2
-
49
-
-
64049100740
-
A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding
-
Ledoux S., Olejniczak M., & Uhlenbeck O. C. A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding. Nat. Struct. Mol. Biol. 16, 359-364 (2009
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 359-364
-
-
Ledoux, S.1
Olejniczak, M.2
Uhlenbeck, O.C.3
-
50
-
-
0036809730
-
Universally conserved interactions between the ribosome, and the anticodon stem-loop of A site tRNA important for translocation
-
Phelps S. S., Jerinic O., & Joseph S. Universally conserved interactions between the ribosome, and the anticodon stem-loop of A site tRNA important for translocation. Mol. Cell 10, 799-807 (2002
-
(2002)
Mol. Cell
, vol.10
, pp. 799-807
-
-
Phelps, S.S.1
Jerinic, O.2
Joseph, S.3
-
51
-
-
18844451459
-
Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding, and translocation
-
Phelps S. S., & Joseph S. Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding, and translocation. J. Mol. Biol. 349, 288-301 (2005
-
(2005)
J. Mol. Biol
, vol.349
, pp. 288-301
-
-
Phelps, S.S.1
Joseph, S.2
-
52
-
-
84871436566
-
Transfer RNA modifications: Nature's combinatorial chemistry playground
-
Jackman J. E., & Alfonzo J. D. Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdiscip. Rev.: RNA 4, 35-48 (2013
-
(2013)
Wiley Interdiscip. Rev.: RNA
, vol.4
, pp. 35-48
-
-
Jackman, J.E.1
Alfonzo, J.D.2
-
53
-
-
84870152928
-
Biosyn thesis, and function of posttranscriptional modifications of transfer RNAs
-
El Y. B., Bailly M., & de Crecy-Lagard V. Biosynthesis, and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69-95 (2012
-
(2012)
Annu. Rev. Genet
, vol.46
, pp. 69-95
-
-
El, Y.B.1
Bailly, M.2
De Crecy-Lagard, V.3
-
54
-
-
0344223281
-
Transfer RNA modification: Influence on translational frameshifting, and metabolism
-
Bjork G. R., et al. Transfer RNA modification: influence on translational frameshifting, and metabolism. FEBS Lett. 452, 47-51 (1999
-
(1999)
FEBS Lett
, vol.452
, pp. 47-51
-
-
Bjork, G.R.1
-
55
-
-
0037053384
-
Accurate translation of the genetic code depends on tRNA modified nucleosides
-
Yarian C., et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391-16395 (2002
-
(2002)
J. Biol. Chem
, vol.277
, pp. 16391-16395
-
-
Yarian, C.1
-
57
-
-
0035917812
-
Expanding the genetic code of Escherichia coli
-
Wang L., Brock A., Herberich B., & Schultz P. G. Expanding the genetic code of Escherichia coli. Science 292, 498-500 (2001
-
(2001)
Science
, vol.292
, pp. 498-500
-
-
Wang, L.1
Brock, A.2
Herberich, B.3
Schultz, P.G.4
-
58
-
-
70449597245
-
Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids
-
Guo J., Melancon C. E., III, Lee H. S., Groff D., & Schultz P. G. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew. Chem., Int. Ed. 48, 9148-9151 (2009
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 9148-9151
-
-
Guo, J.1
Melancon, C.E.2
Lee, H.S.3
Groff, D.4
Schultz, P.G.5
-
59
-
-
0034846826
-
Construction of high-complexity combinatorial phage display peptide libraries
-
Noren K. A., & Noren C. J. Construction of high-complexity combinatorial phage display peptide libraries. Methods 23, 169-178 (2001
-
(2001)
Methods
, vol.23
, pp. 169-178
-
-
Noren, K.A.1
Noren, C.J.2
-
60
-
-
84863443015
-
Genetic encoding of bicyclononynes, and trans-cyclooctenes for site-specific protein labeling in vitro, and in live mammalian cells via rapid fluorogenic diels-alder reactions
-
Lang K., et al. Genetic encoding of bicyclononynes, and trans-cyclooctenes for site-specific protein labeling in vitro, and in live mammalian cells via rapid fluorogenic diels-alder reactions. J. Am. Chem. Soc. 134, 10317-10320 (2012
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 10317-10320
-
-
Lang, K.1
|