메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Systematic evolution and study of UAGN decoding tRNAs in a genomically recoded bacteria

Author keywords

[No Author keywords available]

Indexed keywords

ANTICODON; CODON; TRANSFER RNA;

EID: 84959239211     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep21898     Document Type: Article
Times cited : (31)

References (60)
  • 1
    • 64049083335 scopus 로고    scopus 로고
    • A gripping tale of ribosomal frameshifting: Extragenic suppressors of frameshift mutations spotlight P-site realignment
    • Atkins J. F., & Bjoerk G. R. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol. Mol. Biol. Rev. 73, 178-210 (2009
    • (2009) Microbiol. Mol. Biol. Rev , vol.73 , pp. 178-210
    • Atkins, J.F.1    Bjoerk, G.R.2
  • 2
    • 0014966535 scopus 로고
    • Suppressors of frameshift mutations in Salmonella typhimurium
    • Riddle D. L., & Roth J. R. Suppressors of frameshift mutations in Salmonella typhimurium. J. Mol. Biol. 54, 131-144 (1970
    • (1970) J. Mol. Biol , vol.54 , pp. 131-144
    • Riddle, D.L.1    Roth, J.R.2
  • 3
    • 0015502296 scopus 로고
    • Externally suppressible proline quadruplet CCCU
    • Yourno J., & Kohno T. Externally suppressible proline quadruplet CCCU. Science 175, 650-652 (1972
    • (1972) Science , vol.175 , pp. 650-652
    • Yourno, J.1    Kohno, T.2
  • 4
    • 0347783961 scopus 로고
    • Frameshift suppression: A nucleotide addition in the anticodon of a glycine transfer RNA
    • Riddle D. L., & Carbon J. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat. New Biol. 242, 230-234 (1973
    • (1973) Nat. New Biol , vol.242 , pp. 230-234
    • Riddle, D.L.1    Carbon, J.2
  • 5
    • 0026681537 scopus 로고
    • Insertion (sufB in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNAPro2 from Salmonella typhimurium induces suppression of frameshift mutations
    • Sroga G. E., Nemoto F., Kuchino Y., & Bjoerk G. R. Insertion (sufB) in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNAPro2 from Salmonella typhimurium induces suppression of frameshift mutations. Nucleic Acids Res. 20, 3463-3469 (1992
    • (1992) Nucleic Acids Res , vol.20 , pp. 3463-3469
    • Sroga, G.E.1    Nemoto, F.2    Kuchino, Y.3    Bjoerk, G.R.4
  • 6
    • 0019934548 scopus 로고
    • Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae
    • Cummins C. M., Donahue T. F., & Culbertson M. R. Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 79, 3565-3569 (1982
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 3565-3569
    • Cummins, C.M.1    Donahue, T.F.2    Culbertson, M.R.3
  • 7
    • 0021740710 scopus 로고
    • Codon recognition during frameshift suppression in Saccharomyces cerevisiae
    • Gaber R. F., & Culbertson M. R. Codon recognition during frameshift suppression in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2052-2061 (1984
    • (1984) Mol. Cell. Biol , vol.4 , pp. 2052-2061
    • Gaber, R.F.1    Culbertson, M.R.2
  • 8
    • 0019414583 scopus 로고
    • Four-base codons ACCA ACCU and ACCC are recognized by frameshift suppressor suf
    • Bossi L., & Roth J. R. Four-base codons ACCA, ACCU, and ACCC are recognized by frameshift suppressor suf. J. Cell 25, 489-496 (1981
    • (1981) J. Cell , vol.25 , pp. 489-496
    • Bossi, L.1    Roth, J.R.2
  • 9
    • 0021733728 scopus 로고
    • Suppressor sufJ: A novel type of tRNA mutant that induces translational frameshifting
    • Bossi L., & Smith D. M. Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting. Proc. Natl. Acad. Sci. USA 81, 6105-6109 (1984
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 6105-6109
    • Bossi, L.1    Smith, D.M.2
  • 10
    • 2442659130 scopus 로고    scopus 로고
    • An expanded genetic code with a functional quadruplet codon
    • Anderson J. C., et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566-7571 (2004
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 7566-7571
    • Anderson, J.C.1
  • 11
    • 33644890438 scopus 로고    scopus 로고
    • Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs
    • Taki M., Matsushita J., & Sisido M. Expanding the genetic code in a mammalian cell line by the introduction of four-base codon/anticodon pairs. Chem Bio Chem 7, 425-428 (2006
    • (2006) Chem Bio Chem , vol.7 , pp. 425-428
    • Taki, M.1    Matsushita, J.2    Sisido, M.3
  • 12
    • 77949772551 scopus 로고    scopus 로고
    • Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
    • Neumann H., Wang K., Davis L., Garcia-Alai M., & Chin J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441-444 (2010
    • (2010) Nature , vol.464 , pp. 441-444
    • Neumann, H.1    Wang, K.2    Davis, L.3    Garcia-Alai, M.4    Chin, J.W.5
  • 13
    • 33745015242 scopus 로고    scopus 로고
    • In vivo incorporation of multiple unnatural amino acids through nonsense, and frameshift suppression
    • Rodriguez E. A., Lester H. A., & Dougherty D. A. In vivo incorporation of multiple unnatural amino acids through nonsense, and frameshift suppression. Proc. Natl. Acad. Sci. USA 103, 8650-8655 (2006
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 8650-8655
    • Rodriguez, E.A.1    Lester, H.A.2    Dougherty, D.A.3
  • 14
    • 84880555518 scopus 로고    scopus 로고
    • An expanded genetic code in mammalian cells with a functional quadruplet codon
    • Niu W., Schultz P. G., & Guo J. An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem. Biol. 8, 1640-1645 (2013
    • (2013) ACS Chem. Biol , vol.8 , pp. 1640-1645
    • Niu, W.1    Schultz, P.G.2    Guo, J.3
  • 15
    • 77953643054 scopus 로고    scopus 로고
    • Adding new chemistries to the genetic code
    • Liu C. C., & Schultz P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444 (2010
    • (2010) Annu. Rev. Biochem , vol.79 , pp. 413-444
    • Liu, C.C.1    Schultz, P.G.2
  • 16
    • 84860211688 scopus 로고    scopus 로고
    • Reprogramming the genetic code
    • Chin J. W. Reprogramming the genetic code. Science 336, 428-429 (2012
    • (2012) Science , vol.336 , pp. 428-429
    • Chin, J.W.1
  • 17
    • 84887075652 scopus 로고    scopus 로고
    • Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids
    • Niu W., & Guo J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Mol. BioSyst. 9, 2961-2970 (2013
    • (2013) Mol. BioSyst , vol.9 , pp. 2961-2970
    • Niu, W.1    Guo, J.2
  • 18
    • 0023623660 scopus 로고
    • Reading frame selection, and transfer RNA anticodon loop stacking
    • Curran J. F., & Yarus M. Reading frame selection, and transfer RNA anticodon loop stacking. Science 238, 1545-1550 (1987
    • (1987) Science , vol.238 , pp. 1545-1550
    • Curran, J.F.1    Yarus, M.2
  • 19
    • 33745657451 scopus 로고    scopus 로고
    • Translocation of a tRNA with an extended anticodon through the ribosome
    • Phelps S. S., et al. Translocation of a tRNA with an extended anticodon through the ribosome. J. Mol. Biol. 360, 610-622 (2006
    • (2006) J. Mol. Biol , vol.360 , pp. 610-622
    • Phelps, S.S.1
  • 20
    • 33745653285 scopus 로고    scopus 로고
    • Recognition, and positioning of mRNA in the ribosome by tRNAs with expanded anticodons
    • Walker S. E., & Fredrick K. Recognition, and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J. Mol. Biol. 360, 599-609 (2006
    • (2006) J. Mol. Biol , vol.360 , pp. 599-609
    • Walker, S.E.1    Fredrick, K.2
  • 21
    • 59349109389 scopus 로고    scopus 로고
    • Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code
    • Bernhardt H. S., & Tate W. P. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code. Biol. Direct 3, 53 (2008
    • (2008) Biol. Direct , vol.3 , pp. 53
    • Bernhardt, H.S.1    Tate, W.P.2
  • 22
    • 0015793073 scopus 로고
    • Nucleotide sequence of the GGG-specific glycine transfer ribonucleic acid of Escherichia coli, and of Salmonella typhimurium
    • Hill C. W., Combriato G., Steinhart W., Riddle D. L., & Carbon J. Nucleotide sequence of the GGG-specific glycine transfer ribonucleic acid of Escherichia coli, and of Salmonella typhimurium. J. Biol. Chem. 248, 4252-4262 (1973
    • (1973) J. Biol. Chem , vol.248 , pp. 4252-4262
    • Hill, C.W.1    Combriato, G.2    Steinhart, W.3    Riddle, D.L.4    Carbon, J.5
  • 23
    • 0034724561 scopus 로고    scopus 로고
    • Quadruplet codons: Implications for code expansion, and the specification of translation step size
    • Moore B., Persson B. C., Nelson C. C., Gesteland R. F., & Atkins J. F. Quadruplet codons: implications for code expansion, and the specification of translation step size. J. Mol. Biol. 298, 195-209 (2000
    • (2000) J. Mol. Biol , vol.298 , pp. 195-209
    • Moore, B.1    Persson, B.C.2    Nelson, C.C.3    Gesteland, R.F.4    Atkins, J.F.5
  • 24
    • 0035970290 scopus 로고    scopus 로고
    • Expanding the genetic code: Selection of efficient suppressors of four-base codons, and identification of shifty four-base codons with a library approach in Escherichia coli
    • Magliery T. J., Anderson J. C., & Schultz P. G. Expanding the genetic code: selection of efficient suppressors of four-base codons, and identification of shifty four-base codons with a library approach in Escherichia coli. J. Mol. Biol. 307, 755-769 (2001
    • (2001) J. Mol. Biol , vol.307 , pp. 755-769
    • Magliery, T.J.1    Anderson, J.C.2    Schultz, P.G.3
  • 25
    • 0036008851 scopus 로고    scopus 로고
    • Exploring the limits of codon, and anticodon size
    • Anderson J. C., Magliery T. J., & Schultz P. G. Exploring the limits of codon, and anticodon size. Chem. Biol. 9, 237-244 (2002
    • (2002) Chem. Biol , vol.9 , pp. 237-244
    • Anderson, J.C.1    Magliery, T.J.2    Schultz, P.G.3
  • 26
    • 34249008095 scopus 로고    scopus 로고
    • Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit
    • Dunham C. M., et al. Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. RNA 13, 817-823 (2007
    • (2007) RNA , vol.13 , pp. 817-823
    • Dunham, C.M.1
  • 27
    • 0032015813 scopus 로고    scopus 로고
    • A new model for phenotypic suppression of frameshift mutations by mutant tRNAs
    • Qian Q., et al. A new model for phenotypic suppression of frameshift mutations by mutant tRNAs. Mol. Cell 1, 471-482 (1998
    • (1998) Mol. Cell , vol.1 , pp. 471-482
    • Qian, Q.1
  • 28
    • 0021731777 scopus 로고
    • Escherichia coli ribosomes translate in vivo with variable rate
    • Pedersen S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3, 2895-2898 (1984
    • (1984) EMBO J. , vol.3 , pp. 2895-2898
    • Pedersen, S.1
  • 29
    • 0031567788 scopus 로고    scopus 로고
    • Structural alterations far from the anticodon of the trnagggpro of salmonella typhimurium induce + 1 frameshifting at the peptidyl-site
    • Qian Q., & Bjork G. R. Structural alterations far from the anticodon of the tRNAGGGPro of Salmonella typhimurium induce + 1 frameshifting at the peptidyl-site. J. Mol. Biol. 273, 978-992 (1997
    • (1997) J. Mol. Biol , vol.273 , pp. 978-992
    • Qian, Q.1    Bjork, G.R.2
  • 30
    • 84907227935 scopus 로고    scopus 로고
    • Structural insights into + 1 frameshifting promoted by expanded or modification-deficient anticodon stem loops
    • Maehigashi T., Dunkle J. A., Miles S. J., & Dunham C. M. Structural insights into + 1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc. Natl. Acad. Sci. USA 111, 12740-12745 (2014
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 12740-12745
    • Maehigashi, T.1    Dunkle, J.A.2    Miles, S.J.3    Dunham, C.M.4
  • 31
    • 58149087082 scopus 로고    scopus 로고
    • The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance
    • Naesvall S. J., Nilsson K., & Bjoerk G. R. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance. J. Mol. Biol. 385, 350-367 (2009
    • (2009) J. Mol. Biol , vol.385 , pp. 350-367
    • Naesvall, S.J.1    Nilsson, K.2    Bjoerk, G.R.3
  • 32
    • 0343665638 scopus 로고    scopus 로고
    • How translational accuracy influences reading frame maintenance
    • Farabaugh P. J., & Bjork G. R. How translational accuracy influences reading frame maintenance. EMBO J. 18, 1427-1434 (1999
    • (1999) EMBO J. , vol.18 , pp. 1427-1434
    • Farabaugh, P.J.1    Bjork, G.R.2
  • 33
    • 4444346213 scopus 로고    scopus 로고
    • On the role of the starved codon, and the takeoff site in ribosome bypassing in Escherichia coli
    • Gallant J., et al. On the role of the starved codon, and the takeoff site in ribosome bypassing in Escherichia coli. J. Mol. Biol. 342, 713-724 (2004
    • (2004) J. Mol. Biol , vol.342 , pp. 713-724
    • Gallant, J.1
  • 34
    • 0025303605 scopus 로고
    • Ribosomal frameshifting in the yeast retrotransposon Ty: TRNAs induce slippage on a 7 nucleotide minimal site
    • Belcourt M. F., & Farabaugh P. J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62, 339-352 (1990
    • (1990) Cell , vol.62 , pp. 339-352
    • Belcourt, M.F.1    Farabaugh, P.J.2
  • 35
    • 0033629418 scopus 로고    scopus 로고
    • Translational frameshifting: Implications for the mechanism of translational frame maintenance
    • Farabaugh P. J. Translational frameshifting: Implications for the mechanism of translational frame maintenance. Prog. Nucleic Acid Res. Mol. Biol. 64, 131-170 (2000
    • (2000) Prog. Nucleic Acid Res. Mol. Biol , vol.64 , pp. 131-170
    • Farabaugh, P.J.1
  • 36
    • 84899055551 scopus 로고    scopus 로고
    • Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labeling, and FRET
    • Wang K., et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labeling, and FRET. Nat. Chem. 6, 393-403 (2014
    • (2014) Nat. Chem , vol.6 , pp. 393-403
    • Wang, K.1
  • 37
    • 84885791219 scopus 로고    scopus 로고
    • Genomically recoded organisms expand biological functions
    • Lajoie M. J., et al. Genomically recoded organisms expand biological functions. Science 342, 357-360 (2013
    • (2013) Science , vol.342 , pp. 357-360
    • Lajoie, M.J.1
  • 38
    • 84905981008 scopus 로고    scopus 로고
    • A bacterial strain with a unique quadruplet codon specifying non-native amino acids
    • Chatterjee A., Lajoie M. J., Xiao H., Church G. M., & Schultz P. G. A bacterial strain with a unique quadruplet codon specifying non-native amino acids. Chem Bio Chem 15, 1782-1786 (2014
    • (2014) Chem Bio Chem , vol.15 , pp. 1782-1786
    • Chatterjee, A.1    Lajoie, M.J.2    Xiao, H.3    Church, G.M.4    Schultz, P.G.5
  • 39
    • 61349139930 scopus 로고    scopus 로고
    • Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality
    • Nozawa K., et al. Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457, 1163-1167 (2009
    • (2009) Nature , vol.457 , pp. 1163-1167
    • Nozawa, K.1
  • 41
    • 56049106840 scopus 로고    scopus 로고
    • Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification
    • Yanagisawa T., et al. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem. Biol. 15, 1187-1197 (2008
    • (2008) Chem. Biol , vol.15 , pp. 1187-1197
    • Yanagisawa, T.1
  • 42
    • 84894148049 scopus 로고    scopus 로고
    • Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells
    • Nguyen D. P., et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240-2243 (2014
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 2240-2243
    • Nguyen, D.P.1
  • 43
    • 84908626417 scopus 로고    scopus 로고
    • Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized Pyrrolysyl tRNA Synthetase/tRNA expression, and engineered eRF1
    • Schmied W. H., Elsasser S. J., Uttamapinant C., & Chin J. W. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized Pyrrolysyl tRNA Synthetase/tRNA expression, and engineered eRF1. J. Am. Chem. Soc. 136, 15577-15583 (2014
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 15577-15583
    • Schmied, W.H.1    Elsasser, S.J.2    Uttamapinant, C.3    Chin, J.W.4
  • 44
    • 79961125738 scopus 로고    scopus 로고
    • Probing protein-protein interactions with a genetically encoded photocrosslinking amino acid
    • Ai H.-W., Shen W., Sagi A., Chen P. R., & Schultz P. G. Probing protein-protein interactions with a genetically encoded photocrosslinking amino acid. Chem Bio Chem 12, 1854-1857 (2011
    • (2011) Chem Bio Chem , vol.12 , pp. 1854-1857
    • Ai, H.-W.1    Shen, W.2    Sagi, A.3    Chen, P.R.4    Schultz, P.G.5
  • 45
    • 70349783657 scopus 로고    scopus 로고
    • A facile system for encoding unnatural amino acids in mammalian cells
    • Chen P. R., et al. A facile system for encoding unnatural amino acids in mammalian cells. Angew. Chem., Int. Ed. 48, 4052-4055 (2009
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 4052-4055
    • Chen, P.R.1
  • 46
    • 84911474578 scopus 로고    scopus 로고
    • Structural insights into translational recoding by frameshift suppressor tRNASuf
    • Fagan C. E., Maehigashi T., Dunkle J. A., Miles S. J., & Dunham C. M. Structural insights into translational recoding by frameshift suppressor tRNASuf. J. RNA 20, 1944-1954 (2014
    • (2014) J. RNA , vol.20 , pp. 1944-1954
    • Fagan, C.E.1    Maehigashi, T.2    Dunkle, J.A.3    Miles, S.J.4    Dunham, C.M.5
  • 47
    • 39749138785 scopus 로고    scopus 로고
    • A structural understanding of the dynamic ribosome machine
    • Steitz T. A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242-253 (2008
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 242-253
    • Steitz, T.A.1
  • 48
    • 33747871555 scopus 로고    scopus 로고
    • TRNA residues that have coevolved with their anticodon to ensure uniform, and accurate codon recognition
    • Olejniczak M., & Uhlenbeck O. C. tRNA residues that have coevolved with their anticodon to ensure uniform, and accurate codon recognition. Biochimie 88, 943-950 (2006
    • (2006) Biochimie , vol.88 , pp. 943-950
    • Olejniczak, M.1    Uhlenbeck, O.C.2
  • 49
    • 64049100740 scopus 로고    scopus 로고
    • A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding
    • Ledoux S., Olejniczak M., & Uhlenbeck O. C. A sequence element that tunes Escherichia coli tRNAAla GGC to ensure accurate decoding. Nat. Struct. Mol. Biol. 16, 359-364 (2009
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 359-364
    • Ledoux, S.1    Olejniczak, M.2    Uhlenbeck, O.C.3
  • 50
    • 0036809730 scopus 로고    scopus 로고
    • Universally conserved interactions between the ribosome, and the anticodon stem-loop of A site tRNA important for translocation
    • Phelps S. S., Jerinic O., & Joseph S. Universally conserved interactions between the ribosome, and the anticodon stem-loop of A site tRNA important for translocation. Mol. Cell 10, 799-807 (2002
    • (2002) Mol. Cell , vol.10 , pp. 799-807
    • Phelps, S.S.1    Jerinic, O.2    Joseph, S.3
  • 51
    • 18844451459 scopus 로고    scopus 로고
    • Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding, and translocation
    • Phelps S. S., & Joseph S. Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding, and translocation. J. Mol. Biol. 349, 288-301 (2005
    • (2005) J. Mol. Biol , vol.349 , pp. 288-301
    • Phelps, S.S.1    Joseph, S.2
  • 52
    • 84871436566 scopus 로고    scopus 로고
    • Transfer RNA modifications: Nature's combinatorial chemistry playground
    • Jackman J. E., & Alfonzo J. D. Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdiscip. Rev.: RNA 4, 35-48 (2013
    • (2013) Wiley Interdiscip. Rev.: RNA , vol.4 , pp. 35-48
    • Jackman, J.E.1    Alfonzo, J.D.2
  • 53
    • 84870152928 scopus 로고    scopus 로고
    • Biosyn thesis, and function of posttranscriptional modifications of transfer RNAs
    • El Y. B., Bailly M., & de Crecy-Lagard V. Biosynthesis, and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69-95 (2012
    • (2012) Annu. Rev. Genet , vol.46 , pp. 69-95
    • El, Y.B.1    Bailly, M.2    De Crecy-Lagard, V.3
  • 54
    • 0344223281 scopus 로고    scopus 로고
    • Transfer RNA modification: Influence on translational frameshifting, and metabolism
    • Bjork G. R., et al. Transfer RNA modification: influence on translational frameshifting, and metabolism. FEBS Lett. 452, 47-51 (1999
    • (1999) FEBS Lett , vol.452 , pp. 47-51
    • Bjork, G.R.1
  • 55
    • 0037053384 scopus 로고    scopus 로고
    • Accurate translation of the genetic code depends on tRNA modified nucleosides
    • Yarian C., et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391-16395 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 16391-16395
    • Yarian, C.1
  • 57
    • 0035917812 scopus 로고    scopus 로고
    • Expanding the genetic code of Escherichia coli
    • Wang L., Brock A., Herberich B., & Schultz P. G. Expanding the genetic code of Escherichia coli. Science 292, 498-500 (2001
    • (2001) Science , vol.292 , pp. 498-500
    • Wang, L.1    Brock, A.2    Herberich, B.3    Schultz, P.G.4
  • 58
    • 70449597245 scopus 로고    scopus 로고
    • Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids
    • Guo J., Melancon C. E., III, Lee H. S., Groff D., & Schultz P. G. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew. Chem., Int. Ed. 48, 9148-9151 (2009
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 9148-9151
    • Guo, J.1    Melancon, C.E.2    Lee, H.S.3    Groff, D.4    Schultz, P.G.5
  • 59
    • 0034846826 scopus 로고    scopus 로고
    • Construction of high-complexity combinatorial phage display peptide libraries
    • Noren K. A., & Noren C. J. Construction of high-complexity combinatorial phage display peptide libraries. Methods 23, 169-178 (2001
    • (2001) Methods , vol.23 , pp. 169-178
    • Noren, K.A.1    Noren, C.J.2
  • 60
    • 84863443015 scopus 로고    scopus 로고
    • Genetic encoding of bicyclononynes, and trans-cyclooctenes for site-specific protein labeling in vitro, and in live mammalian cells via rapid fluorogenic diels-alder reactions
    • Lang K., et al. Genetic encoding of bicyclononynes, and trans-cyclooctenes for site-specific protein labeling in vitro, and in live mammalian cells via rapid fluorogenic diels-alder reactions. J. Am. Chem. Soc. 134, 10317-10320 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 10317-10320
    • Lang, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.