메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1009-1018

PAIGE: PAirwise Image Geometry Encoding for improved efficiency in Structure-from-Motion

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; EFFICIENCY; ENCODING (SYMBOLS); GEOMETRY; MOTION ANALYSIS; PATTERN RECOGNITION;

EID: 84959237614     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298703     Document Type: Conference Paper
Times cited : (31)

References (43)
  • 4
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Y Amit and D. G. Y Shape quantization and recognition with randomized trees. Neural Computation, 9:1545-1588, 1997
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • Amit, Y.1
  • 5
    • 33745827782 scopus 로고    scopus 로고
    • Surf: Speeded up robust features
    • A. Leonardis, H. Bischof, and A. Pinz, editors
    • H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In A. Leonardis, H. Bischof, and A. Pinz, editors, Proc. ECCV, volume 3951, pages 404-417. 2006
    • (2006) Proc. ECCV , vol.3951 , pp. 404-417
    • Bay, H.1    Tuytelaars, T.2    Van Gool, L.3
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 84867691733 scopus 로고    scopus 로고
    • Learning to match images in largescale collections
    • 2,3
    • S. Cao and N. Snavely. Learning to match images in largescale collections. In Proc. ECCV, volume 7583, pages 259-270. 2012. 2,3
    • (2012) Proc. ECCV , vol.7583 , pp. 259-270
    • Cao, S.1    Snavely, N.2
  • 8
    • 24644499558 scopus 로고    scopus 로고
    • Matching with prosac-progressive sample consensus
    • O. Chum and J. Matas. Matching with prosac-progressive sample consensus. In Proc. CVPR, volume 1, pages 220-226,2005
    • (2005) Proc. CVPR , vol.1 , pp. 220-226
    • Chum, O.1    Matas, J.2
  • 9
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • O. Chum and l. Matas. Large-scale discovery of spatially related images. IEEE PAMI, 32(2):371-377, 2010
    • (2010) IEEE PAMI , vol.32 , Issue.2 , pp. 371-377
    • Chum, O.1    Matas, L.2
  • 10
    • 80052908130 scopus 로고    scopus 로고
    • Total recall II: Query expansion revisited
    • O. Chum, A. Mikulik, M. Perdoch, and J. Matas. Total recall ii: Query expansion revisited. In Proc. CVPR, pages 889-896, 2011
    • (2011) Proc. CVPR , pp. 889-896
    • Chum, O.1    Mikulik, A.2    Perdoch, M.3    Matas, J.4
  • 11
    • 80052881490 scopus 로고    scopus 로고
    • Discrete-continuous optimization for large-scale structure from motion
    • D. Crandall, A. Owens, N. Snavely, and D. P. Hutten10cher. Discrete-continuous optimization for large-scale structure from motion. InProc. CVPR,2011. 1,2
    • (2011) Proc. CVPR , pp. 1-2
    • Crandall, D.1    Owens, A.2    Snavely, N.3    Huttenlocher, D.P.4
  • 12
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • June
    • M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395, June 1981
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 14
    • 77955992537 scopus 로고    scopus 로고
    • Improving the efficiency of hierarchical structure-and-motion
    • R. Gherardi, M. Farenzena, and A. Fusiello. Improving the efficiency of hierarchical structure-and-motion. In Proc. CVPR, pages 1594-1600,2010
    • (2010) Proc. CVPR , pp. 1594-1600
    • Gherardi, R.1    Farenzena, M.2    Fusiello, A.3
  • 15
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell. The pyramid match kernel: discriminative classification with sets of image features. In Proc. ICCV, volume 2, pages 1458-1465,2005
    • (2005) Proc. ICCV , vol.2 , pp. 1458-1465
    • Grauman, K.1    Darrell, T.2
  • 18
    • 84906509942 scopus 로고    scopus 로고
    • Vocmatch: Efficient multiview correspondence for structure from motion
    • 2,3
    • M. Havlena and K. Schindler. Vocmatch: Efficient multiview correspondence for structure from motion. In Proc. ECCV, volume 8691, pages 46-60. 2014. 2,3
    • (2014) Proc. ECCV , vol.8691 , pp. 46-60
    • Havlena, M.1    Schindler, K.2
  • 19
    • 84867865899 scopus 로고    scopus 로고
    • Comparative evaluation of binary features
    • J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation of binary features. In Proc. ECCV, pages 759-773. 2012
    • (2012) Proc. ECCV , pp. 759-773
    • Heinly, J.1    Dunn, E.2    Frahm, J.-M.3
  • 20
    • 84959248905 scopus 로고    scopus 로고
    • Reconstructing the World in Six Days (As Captured by the Yahoo 100 Million Image Dataset)
    • J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Reconstructing the World in Six Days (As Captured by the Yahoo 100 Million Image Dataset). In Proc. CVPR, 2015
    • (2015) Proc. CVPR
    • Heinly, J.1    Schonberger, J.L.2    Dunn, E.3    Frahm, J.-M.4
  • 21
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho. The random subspace method for constructing decision forests. IEEE PAMI, 20(8):832-844,1998
    • (1998) IEEE PAMI , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 22
    • 77951207698 scopus 로고    scopus 로고
    • Improving bag-offeatures for large scale image search
    • H. Jegou, M. Douze, and C. Schmid. Improving bag-offeatures for large scale image search. IJCV, 87(3):316-336, 2010
    • (2010) IJCV , vol.87 , Issue.3 , pp. 316-336
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 23
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with fisher vectors for image categorization
    • J. Krapac, J. Verbeek, and F. lurie. Modeling spatial layout with fisher vectors for image categorization. In Proc. ICCV, pages 1487-1494, 2011
    • (2011) Proc. ICCV , pp. 1487-1494
    • Krapac, J.1    Verbeek, J.2    Lurie, F.3
  • 24
    • 84856647875 scopus 로고    scopus 로고
    • Brisk: Binary robust invariant scalable keypoints
    • S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invariant scalable keypoints. In Proc. ICCV, pages 2548-2555,2011
    • (2011) Proc. ICCV , pp. 2548-2555
    • Leutenegger, S.1    Chli, M.2    Siegwart, R.3
  • 25
    • 78149335629 scopus 로고    scopus 로고
    • Location recognition using prioritized feature matching
    • Y Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized feature matching. In Proc. ECCV, pages 791-804, 2010
    • (2010) Proc. ECCV , pp. 791-804
    • Li, Y.1    Snavely, N.2    Huttenlocher, D.P.3
  • 26
    • 84939438653 scopus 로고    scopus 로고
    • Matchminer: Efficient spanning structure mining in large image collections
    • Y Lou, N. Snavely, and l. Gehrke. Matchminer: Efficient spanning structure mining in large image collections. In Proc. ECCV, 2012
    • (2012) Proc. ECCV
    • Lou, Y.1    Snavely, N.2    Gehrke, L.3
  • 27
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. lJCV, 60(2):91-110, 2004
    • (2004) LJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 28
    • 33745902531 scopus 로고    scopus 로고
    • Randomized ran sac with sequential probability ratio test
    • J. Matas and O. Chum. Randomized ran sac with sequential probability ratio test. In Proc. ICCV, volume 2, pages 1727-1732, 2005
    • (2005) Proc. ICCV , vol.2 , pp. 1727-1732
    • Matas, J.1    Chum, O.2
  • 29
    • 0041940291 scopus 로고    scopus 로고
    • An efficient solution to the five-point relative pose problem
    • 2
    • D. Nister. An efficient solution to the five-point relative pose problem. In Proc. CVPR, volume 2, pages 11-195-202 vo1. 2, 2003
    • (2003) Proc. CVPR , vol.2 , pp. 11195-11202
    • Nister, D.1
  • 30
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proc. CVPR, pages 2161-2168, 2006
    • (2006) Proc. CVPR , pp. 2161-2168
    • Nister, D.1    Stewenius, H.2
  • 31
    • 70450179951 scopus 로고    scopus 로고
    • Efficient representation of local geometry for large scale object retrieval
    • M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In Proc. CVPR, pages 9-16, 2009
    • (2009) Proc. CVPR , pp. 9-16
    • Perdoch, M.1    Chum, O.2    Matas, J.3
  • 33
    • 84879855860 scopus 로고    scopus 로고
    • Usac: A universal framework for random sample consensus
    • R. Raguram, O. Chum, M. Pollefeys, l. Matas, and J. Frahm. Usac: A universal framework for random sample consensus. IEEE PAMI, 35(8):2022-2038, 2013
    • (2013) IEEE PAMI , vol.35 , Issue.8 , pp. 2022-2038
    • Raguram, R.1    Chum, O.2    Pollefeys, M.3    Matas, L.4    Frahm, J.5
  • 34
    • 84898478671 scopus 로고    scopus 로고
    • Improved geometric verification for large scale landmark image collections
    • R. Raguram, J. Tighe, and J.-M. Frahm. Improved geometric verification for large scale landmark image collections. In Proc. BMVC, pages 77. 1-77. 11, 2012
    • (2012) Proc. BMVC , pp. 771-7711
    • Raguram, R.1    Tighe, J.2    Frahm, J.-M.3
  • 35
    • 80052947789 scopus 로고    scopus 로고
    • Modeling and recognition of landmark image collections using iconic scene graphs
    • R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. Modeling and recognition of landmark image collections using iconic scene graphs. lJCV, 95(3):213-239, 2011
    • (2011) LJCV , vol.95 , Issue.3 , pp. 213-239
    • Raguram, R.1    Wu, C.2    Frahm, J.-M.3    Lazebnik, S.4
  • 36
    • 84856627527 scopus 로고    scopus 로고
    • Orb: An efficient alternative to sift or surf
    • E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In Proc. ICCV, pages 2564-2571, 2011
    • (2011) Proc. ICCV , pp. 2564-2571
    • Rublee, E.1    Rabaud, V.2    Konolige, K.3    Bradski, G.4
  • 38
    • 84871122058 scopus 로고    scopus 로고
    • A multi-stage linear approach to structure from motion
    • K. N. Kutulakos, editor
    • S. N. Sinha, D. Steed1y, and R. Szeliski. A multi-stage linear approach to structure from motion. In K. N. Kutulakos, editor, Trends and Topics in Computer Vision, volume 6554, pages 267-28l. 2012
    • (2012) Trends and Topics in Computer Vision , vol.6554 , pp. 267-281
    • Sinha, S.N.1    Steedly, D.2    Szeliski, R.3
  • 39
    • 51949085553 scopus 로고    scopus 로고
    • Skeletal graphs for efficient structure from motion
    • N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for efficient structure from motion. In Proc. CVPR, 2009. 1,2
    • (2009) Proc. CVPR , pp. 1-2
    • Snavely, N.1    Seitz, S.M.2    Szeliski, R.3
  • 40
    • 84867878523 scopus 로고    scopus 로고
    • Size matters: Exhaustive geometric verification for image retrieval accepted for eccv 2012
    • H. Stewnius, S. H. Gunderson, and J. Pilet. Size matters: Exhaustive geometric verification for image retrieval accepted for eccv 2012. In Proc. ECCV, pages 674-687. 2012
    • (2012) Proc. ECCV , pp. 674-687
    • Stewnius, H.1    Gunderson, S.H.2    Pilet, J.3
  • 41
    • 84906484729 scopus 로고    scopus 로고
    • Robust global translations with Idsfm
    • K. Wilson and N. Snavely. Robust global translations with Idsfm. In Proc. ECCV, volume 8691, pages 61-75. 2014
    • (2014) Proc. ECCV , vol.8691 , pp. 61-75
    • Wilson, K.1    Snavely, N.2
  • 42
    • 84886051944 scopus 로고    scopus 로고
    • Towards linear-time incremental structure from motion
    • June
    • C. Wu. Towards linear-time incremental structure from motion. In Proc. 3D Vision, pages 127-134, June 2013.
    • (2013) Proc. 3D Vision , pp. 127-134
    • Wu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.