-
2
-
-
35148868709
-
A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis
-
S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In Proc. CVPR. IEEE, 2007
-
(2007)
Proc CVPR. IEEE
-
-
Ali, S.1
Shah, M.2
-
3
-
-
70450209996
-
Floor fields for tracking in high density crowd scenes
-
Springer
-
S. Ali and M. Shah. Floor fields for tracking in high density crowd scenes. In Proc. ECCV. Springer, 2008
-
(2008)
Proc. ECCV
-
-
Ali, S.1
Shah, M.2
-
4
-
-
33744506087
-
Behavioral priors for detection and tracking of pedestrians in video sequences
-
G. Antonini, S. V. Martinez, M. Bierlaire, and J. P. Thiran. Behavioral priors for detection and tracking of pedestrians in video sequences. International Journal of Computer Vision, 69(2):159-180, 2006
-
(2006)
International Journal of Computer Vision
, vol.69
, Issue.2
, pp. 159-180
-
-
Antonini, G.1
Martinez, S.V.2
Bierlaire, M.3
Thiran, J.P.4
-
6
-
-
84856655873
-
Probabilistic group-level motion analysis and scenario recognition
-
M.-C. Chang, N. Krahnstoever, and W. Ge. Probabilistic group-level motion analysis and scenario recognition. In Proc. ICCV. IEEE, 2011
-
(2011)
Proc. ICCV. IEEE
-
-
Chang, M.-C.1
Krahnstoever, N.2
Ge, W.3
-
7
-
-
80052882125
-
Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model
-
R. Emonet, J. Varadarajan, and J.-M. Odobez. Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. In Proc. CVPR. IEEE, 2011
-
(2011)
Proc. CVPR. IEEE
-
-
Emonet, R.1
Varadarajan, J.2
Odobez, J.-M.3
-
9
-
-
84859193194
-
Vision-based analysis of small groups in pedestrian crowds
-
W. Ge, R. T. Collins, and R. B. Ruback. Vision-based analysis of small groups in pedestrian crowds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):1003-1016, 2012
-
(2012)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.34
, Issue.5
, pp. 1003-1016
-
-
Ge, W.1
Collins, R.T.2
Ruback, R.B.3
-
11
-
-
0034727079
-
Simulating dynamical features of escape panic
-
D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 407(6803):487-490, 2000
-
(2000)
Nature
, vol.407
, Issue.6803
, pp. 487-490
-
-
Helbing, D.1
Farkas, I.2
Vicsek, T.3
-
12
-
-
35949007691
-
Social force model for pedestrian dynamics
-
D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical review E, 51(5):4282, 1995
-
(1995)
Physical Review e
, vol.51
, Issue.5
, pp. 4282
-
-
Helbing, D.1
Molnar, P.2
-
13
-
-
85085175172
-
A markov clustering topic model for mining behaviour in video
-
T. Hospedales, S. Gong, and T. Xiang. A markov clustering topic model for mining behaviour in video. In Proc. ICCV. IEEE, 2009
-
(2009)
Proc ICCV. IEEE
-
-
Hospedales, T.1
Gong, S.2
Xiang, T.3
-
14
-
-
80054954521
-
Identifying rare and subtle behaviors: A weakly supervised joint topic model
-
T. M. Hospedales, J. Li, S. Gong, and T. Xiang. Identifying rare and subtle behaviors: A weakly supervised joint topic model. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(12):2451-2464, 2011
-
(2011)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.33
, Issue.12
, pp. 2451-2464
-
-
Hospedales, T.M.1
Li, J.2
Gong, S.3
Xiang, T.4
-
15
-
-
34047192473
-
Semantic-based surveillance video retrieval
-
W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank. Semantic-based surveillance video retrieval. Image Processing, IEEE Transactions on, 16(4):1168-1181, 2007
-
(2007)
Image Processing, IEEE Transactions on
, vol.16
, Issue.4
, pp. 1168-1181
-
-
Hu, W.1
Xie, D.2
Fu, Z.3
Zeng, W.4
Maybank, S.5
-
16
-
-
84863025459
-
Gaussian process regression flow for analysis of motion trajectories
-
K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of motion trajectories. In Proc. ICCV. IEEE, 2011
-
(2011)
Proc. ICCV. IEEE
-
-
Kim, K.1
Lee, D.2
Essa, I.3
-
17
-
-
0029324858
-
Finding shortest paths on surfaces using level sets propagation
-
R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest paths on surfaces using level sets propagation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(6):635-640, 1995
-
(1995)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.17
, Issue.6
, pp. 635-640
-
-
Kimmel, R.1
Amir, A.2
Bruckstein, A.M.3
-
19
-
-
84866726795
-
Social roles in hierarchical models for human activity recognition
-
T. Lan, L. Sigal, and G. Mori. Social roles in hierarchical models for human activity recognition. In Proc. CVPR. IEEE, 2012
-
(2012)
Proc. CVPR. IEEE
-
-
Lan, T.1
Sigal, L.2
Mori, G.3
-
20
-
-
84862638723
-
Discriminative latent models for recognizing contextual group activities
-
T. Lan, Y. Wang, W. Yang, S. N. Robinovitch, and G. Mori. Discriminative latent models for recognizing contextual group activities. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(8):1549-1562, 2012
-
(2012)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.34
, Issue.8
, pp. 1549-1562
-
-
Lan, T.1
Wang, Y.2
Yang, W.3
Robinovitch, S.N.4
Mori, G.5
-
21
-
-
80052574031
-
The crowd: A study of the popular mind
-
G. Le Bon. The crowd: A study of the popular mind. Macmillian, 1897
-
(1897)
Macmillian
-
-
Le Bon, G.1
-
23
-
-
77956003887
-
Modeling and estimating persistent motion with geometric flows
-
D. Lin, E. Grimson, and J. Fisher. Modeling and estimating persistent motion with geometric flows. In Proc. CVPR. IEEE, 2010
-
(2010)
Proc. CVPR. IEEE
-
-
Lin, D.1
Grimson, E.2
Fisher, J.3
-
24
-
-
20444410793
-
Learning semantic scene models from observing activity in visual surveillance
-
D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 35(3):397-408, 2005
-
(2005)
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
, vol.35
, Issue.3
, pp. 397-408
-
-
Makris, D.1
Ellis, T.2
-
25
-
-
70450255364
-
Abnormal crowd behavior detection using social force model
-
R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In Proc. CVPR. IEEE, 2009
-
(2009)
Proc. CVPR. IEEE
-
-
Mehran, R.1
Oyama, A.2
Shah, M.3
-
26
-
-
80053105598
-
Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach
-
B. T. Morris and M. M. Trivedi. Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(11):2287-2301, 2011
-
(2011)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.33
, Issue.11
, pp. 2287-2301
-
-
Morris, B.T.1
Trivedi, M.M.2
-
27
-
-
79955558826
-
How simple rules determine pedestrian behavior and crowd disasters
-
M. Moussäd, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108(17):6884-6888, 2011
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, Issue.17
, pp. 6884-6888
-
-
Moussäd, M.1
Helbing, D.2
Theraulaz, G.3
-
28
-
-
77956323937
-
The walking behaviour of pedestrian social groups and its impact on crowd dynamics
-
M. Moussäd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one, 5(4):e10047, 2010
-
(2010)
PloS One
, vol.5
, Issue.4
, pp. e10047
-
-
Moussäd, M.1
Perozo, N.2
Garnier, S.3
Helbing, D.4
Theraulaz, G.5
-
31
-
-
77953186524
-
Learning pedestrian dynamics from the real world
-
P. Scovanner and M. F. Tappen. Learning pedestrian dynamics from the real world. In Proc. ICCV. IEEE, 2009
-
(2009)
Proc. ICCV. IEEE
-
-
Scovanner, P.1
Tappen, M.F.2
-
32
-
-
0029966538
-
A fast marching level set method for monotonically advancing fronts
-
J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4):1591-1595, 1996
-
(1996)
Proceedings of the National Academy of Sciences
, vol.93
, Issue.4
, pp. 1591-1595
-
-
Sethian, J.A.1
-
35
-
-
84887387475
-
Improving an object detector and extracting regions using superpixels
-
G. Shu, A. Dehghan, and M. Shah. Improving an object detector and extracting regions using superpixels. In Proc. CVPR. IEEE, 2013
-
(2013)
Proc. CVPR. IEEE
-
-
Shu, G.1
Dehghan, A.2
Shah, M.3
-
36
-
-
80052959472
-
Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models
-
X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson. Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models. International Journal of Computer Vision, 95(3):287-312, 2011
-
(2011)
International Journal of Computer Vision
, vol.95
, Issue.3
, pp. 287-312
-
-
Wang, X.1
Ma, K.T.2
Ng, G.-W.3
Grimson, W.E.L.4
-
37
-
-
63849117955
-
Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
-
X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(3):539-555, 2009
-
(2009)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.31
, Issue.3
, pp. 539-555
-
-
Wang, X.1
Ma, X.2
Grimson, W.E.L.3
-
38
-
-
84937469106
-
Profiling stationary crowd groups
-
S. Yi and X. Wang. Profiling stationary crowd groups. In Proc. ICME. IEEE, 2014
-
(2014)
Proc. ICME. IEEE
-
-
Yi, S.1
Wang, X.2
-
39
-
-
84911456271
-
L0 regularized stationary time estimation for crowd group analysis
-
S. Yi, X. Wang, C. Lu, and J. Jia. L0 regularized stationary time estimation for crowd group analysis. In Proc. CVPR. IEEE, 2014
-
(2014)
Proc CVPR. IEEE
-
-
Yi, S.1
Wang, X.2
Lu, C.3
Jia, J.4
-
40
-
-
84959214343
-
Cross-scene crowd counting via deep convolutional neural networks
-
C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In Proc. CVPR. IEEE, 2015
-
(2015)
Proc. CVPR. IEEE
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
42
-
-
84921069235
-
Learning collective crowd behaviors with dynamic pedestrian-agents
-
B. Zhou, X. Tang, and X. Wang. Learning collective crowd behaviors with dynamic pedestrian-agents. International Journal of Computer Vision, 111(1):50-68, 2015
-
(2015)
International Journal of Computer Vision
, vol.111
, Issue.1
, pp. 50-68
-
-
Zhou, B.1
Tang, X.2
Wang, X.3
-
43
-
-
84904253434
-
Measuring crowd collectiveness
-
B. Zhou, X. Tang, H. Zhang, and X. Wang. Measuring crowd collectiveness. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(8):1586-1599, 2014
-
(2014)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.36
, Issue.8
, pp. 1586-1599
-
-
Zhou, B.1
Tang, X.2
Zhang, H.3
Wang, X.4
-
44
-
-
80052901211
-
Random field topic model for semantic region analysis in crowded scenes from tracklets
-
B. Zhou, X. Wang, and X. Tang. Random field topic model for semantic region analysis in crowded scenes from tracklets. In Proc. CVPR. IEEE, 2011
-
(2011)
Proc. CVPR. IEEE
-
-
Zhou, B.1
Wang, X.2
Tang, X.3
-
45
-
-
84866645335
-
Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents
-
B. Zhou, X. Wang, and X. Tang. Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In Proc. CVPR. IEEE, 2012.
-
(2012)
Proc. CVPR. IEEE
-
-
Zhou, B.1
Wang, X.2
Tang, X.3
|