메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 488-496

Understanding pedestrian behaviors from stationary crowd groups

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LARGE DATASET; SECURITY SYSTEMS;

EID: 84959223987     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298971     Document Type: Conference Paper
Times cited : (208)

References (45)
  • 2
    • 35148868709 scopus 로고    scopus 로고
    • A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis
    • S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In Proc. CVPR. IEEE, 2007
    • (2007) Proc CVPR. IEEE
    • Ali, S.1    Shah, M.2
  • 3
    • 70450209996 scopus 로고    scopus 로고
    • Floor fields for tracking in high density crowd scenes
    • Springer
    • S. Ali and M. Shah. Floor fields for tracking in high density crowd scenes. In Proc. ECCV. Springer, 2008
    • (2008) Proc. ECCV
    • Ali, S.1    Shah, M.2
  • 6
    • 84856655873 scopus 로고    scopus 로고
    • Probabilistic group-level motion analysis and scenario recognition
    • M.-C. Chang, N. Krahnstoever, and W. Ge. Probabilistic group-level motion analysis and scenario recognition. In Proc. ICCV. IEEE, 2011
    • (2011) Proc. ICCV. IEEE
    • Chang, M.-C.1    Krahnstoever, N.2    Ge, W.3
  • 7
    • 80052882125 scopus 로고    scopus 로고
    • Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model
    • R. Emonet, J. Varadarajan, and J.-M. Odobez. Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. In Proc. CVPR. IEEE, 2011
    • (2011) Proc. CVPR. IEEE
    • Emonet, R.1    Varadarajan, J.2    Odobez, J.-M.3
  • 11
    • 0034727079 scopus 로고    scopus 로고
    • Simulating dynamical features of escape panic
    • D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 407(6803):487-490, 2000
    • (2000) Nature , vol.407 , Issue.6803 , pp. 487-490
    • Helbing, D.1    Farkas, I.2    Vicsek, T.3
  • 12
    • 35949007691 scopus 로고
    • Social force model for pedestrian dynamics
    • D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical review E, 51(5):4282, 1995
    • (1995) Physical Review e , vol.51 , Issue.5 , pp. 4282
    • Helbing, D.1    Molnar, P.2
  • 13
    • 85085175172 scopus 로고    scopus 로고
    • A markov clustering topic model for mining behaviour in video
    • T. Hospedales, S. Gong, and T. Xiang. A markov clustering topic model for mining behaviour in video. In Proc. ICCV. IEEE, 2009
    • (2009) Proc ICCV. IEEE
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 16
    • 84863025459 scopus 로고    scopus 로고
    • Gaussian process regression flow for analysis of motion trajectories
    • K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of motion trajectories. In Proc. ICCV. IEEE, 2011
    • (2011) Proc. ICCV. IEEE
    • Kim, K.1    Lee, D.2    Essa, I.3
  • 19
    • 84866726795 scopus 로고    scopus 로고
    • Social roles in hierarchical models for human activity recognition
    • T. Lan, L. Sigal, and G. Mori. Social roles in hierarchical models for human activity recognition. In Proc. CVPR. IEEE, 2012
    • (2012) Proc. CVPR. IEEE
    • Lan, T.1    Sigal, L.2    Mori, G.3
  • 21
    • 80052574031 scopus 로고
    • The crowd: A study of the popular mind
    • G. Le Bon. The crowd: A study of the popular mind. Macmillian, 1897
    • (1897) Macmillian
    • Le Bon, G.1
  • 22
    • 70450202492 scopus 로고    scopus 로고
    • Learning visual flows: A lie algebraic approach
    • D. Lin, E. Grimson, and J. Fisher. Learning visual flows: A lie algebraic approach. In Proc. CVPR. IEEE, 2009
    • (2009) Proc. CVPR. IEEE
    • Lin, D.1    Grimson, E.2    Fisher, J.3
  • 23
    • 77956003887 scopus 로고    scopus 로고
    • Modeling and estimating persistent motion with geometric flows
    • D. Lin, E. Grimson, and J. Fisher. Modeling and estimating persistent motion with geometric flows. In Proc. CVPR. IEEE, 2010
    • (2010) Proc. CVPR. IEEE
    • Lin, D.1    Grimson, E.2    Fisher, J.3
  • 25
    • 70450255364 scopus 로고    scopus 로고
    • Abnormal crowd behavior detection using social force model
    • R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In Proc. CVPR. IEEE, 2009
    • (2009) Proc. CVPR. IEEE
    • Mehran, R.1    Oyama, A.2    Shah, M.3
  • 26
    • 80053105598 scopus 로고    scopus 로고
    • Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach
    • B. T. Morris and M. M. Trivedi. Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(11):2287-2301, 2011
    • (2011) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.33 , Issue.11 , pp. 2287-2301
    • Morris, B.T.1    Trivedi, M.M.2
  • 28
    • 77956323937 scopus 로고    scopus 로고
    • The walking behaviour of pedestrian social groups and its impact on crowd dynamics
    • M. Moussäd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one, 5(4):e10047, 2010
    • (2010) PloS One , vol.5 , Issue.4 , pp. e10047
    • Moussäd, M.1    Perozo, N.2    Garnier, S.3    Helbing, D.4    Theraulaz, G.5
  • 29
    • 77953225589 scopus 로고    scopus 로고
    • You'll never walk alone: Modeling social behavior for multi-target tracking
    • S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You'll never walk alone: Modeling social behavior for multi-target tracking. In Proc. ICCV. IEEE, 2009
    • (2009) Proc. ICCV. IEEE
    • Pellegrini, S.1    Ess, A.2    Schindler, K.3    Van Gool, L.4
  • 31
    • 77953186524 scopus 로고    scopus 로고
    • Learning pedestrian dynamics from the real world
    • P. Scovanner and M. F. Tappen. Learning pedestrian dynamics from the real world. In Proc. ICCV. IEEE, 2009
    • (2009) Proc. ICCV. IEEE
    • Scovanner, P.1    Tappen, M.F.2
  • 32
    • 0029966538 scopus 로고    scopus 로고
    • A fast marching level set method for monotonically advancing fronts
    • J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4):1591-1595, 1996
    • (1996) Proceedings of the National Academy of Sciences , vol.93 , Issue.4 , pp. 1591-1595
    • Sethian, J.A.1
  • 33
    • 84959200559 scopus 로고    scopus 로고
    • Deeply learned attributes for crowded scene understanding
    • J. Shao, K. Kang, C. C. Loy, and X. Wang. Deeply learned attributes for crowded scene understanding. In Proc. CVPR. IEEE, 2015
    • (2015) Proc. CVPR. IEEE
    • Shao, J.1    Kang, K.2    Loy, C.C.3    Wang, X.4
  • 34
    • 84911388960 scopus 로고    scopus 로고
    • Scene independent group profiling in crowd
    • J. Shao, C. C. Loy, and X. Wang. Scene independent group profiling in crowd. In Proc. CVPR. IEEE, 2014
    • (2014) Proc. CVPR. IEEE
    • Shao, J.1    Loy, C.C.2    Wang, X.3
  • 35
    • 84887387475 scopus 로고    scopus 로고
    • Improving an object detector and extracting regions using superpixels
    • G. Shu, A. Dehghan, and M. Shah. Improving an object detector and extracting regions using superpixels. In Proc. CVPR. IEEE, 2013
    • (2013) Proc. CVPR. IEEE
    • Shu, G.1    Dehghan, A.2    Shah, M.3
  • 36
    • 80052959472 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models
    • X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson. Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models. International Journal of Computer Vision, 95(3):287-312, 2011
    • (2011) International Journal of Computer Vision , vol.95 , Issue.3 , pp. 287-312
    • Wang, X.1    Ma, K.T.2    Ng, G.-W.3    Grimson, W.E.L.4
  • 37
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
    • X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(3):539-555, 2009
    • (2009) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.31 , Issue.3 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, W.E.L.3
  • 38
    • 84937469106 scopus 로고    scopus 로고
    • Profiling stationary crowd groups
    • S. Yi and X. Wang. Profiling stationary crowd groups. In Proc. ICME. IEEE, 2014
    • (2014) Proc. ICME. IEEE
    • Yi, S.1    Wang, X.2
  • 39
    • 84911456271 scopus 로고    scopus 로고
    • L0 regularized stationary time estimation for crowd group analysis
    • S. Yi, X. Wang, C. Lu, and J. Jia. L0 regularized stationary time estimation for crowd group analysis. In Proc. CVPR. IEEE, 2014
    • (2014) Proc CVPR. IEEE
    • Yi, S.1    Wang, X.2    Lu, C.3    Jia, J.4
  • 40
    • 84959214343 scopus 로고    scopus 로고
    • Cross-scene crowd counting via deep convolutional neural networks
    • C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In Proc. CVPR. IEEE, 2015
    • (2015) Proc. CVPR. IEEE
    • Zhang, C.1    Li, H.2    Wang, X.3    Yang, X.4
  • 42
    • 84921069235 scopus 로고    scopus 로고
    • Learning collective crowd behaviors with dynamic pedestrian-agents
    • B. Zhou, X. Tang, and X. Wang. Learning collective crowd behaviors with dynamic pedestrian-agents. International Journal of Computer Vision, 111(1):50-68, 2015
    • (2015) International Journal of Computer Vision , vol.111 , Issue.1 , pp. 50-68
    • Zhou, B.1    Tang, X.2    Wang, X.3
  • 44
    • 80052901211 scopus 로고    scopus 로고
    • Random field topic model for semantic region analysis in crowded scenes from tracklets
    • B. Zhou, X. Wang, and X. Tang. Random field topic model for semantic region analysis in crowded scenes from tracklets. In Proc. CVPR. IEEE, 2011
    • (2011) Proc. CVPR. IEEE
    • Zhou, B.1    Wang, X.2    Tang, X.3
  • 45
    • 84866645335 scopus 로고    scopus 로고
    • Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents
    • B. Zhou, X. Wang, and X. Tang. Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In Proc. CVPR. IEEE, 2012.
    • (2012) Proc. CVPR. IEEE
    • Zhou, B.1    Wang, X.2    Tang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.