메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2640-2644

Segmental conditional random fields with deep neural networks as acoustic models for first-password recognition

Author keywords

First pass decoder; Segmental conditional random fields; Word recognition

Indexed keywords

ACOUSTIC FIELDS; DECODING; RANDOM PROCESSES; SPEECH COMMUNICATION; TELEPHONE SETS; VOCABULARY CONTROL;

EID: 84959175560     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (31)
  • 1
    • 0030245363 scopus 로고    scopus 로고
    • From hmm's to segment models: A unified view of stochastic modeling for speech recognition
    • M. Ostendorf, V. V. Digalakis, and O. A. Kimball, "From hmm's to segment models: A unified view of stochastic modeling for speech recognition, " Speech and Audio Processing, IEEE Transactions on, vol. 4, no. 5, pp. 360-378, 1996.
    • (1996) Speech and Audio Processing, IEEE Transactions on , vol.4 , Issue.5 , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.V.2    Kimball, O.A.3
  • 2
    • 0038359548 scopus 로고    scopus 로고
    • A probabilistic framework for segment-based speech recognition
    • J. R. Glass, "A probabilistic framework for segment-based speech recognition, " Computer Speech & Language, vol. 17, no. 2, pp. 137-152, 2003.
    • (2003) Computer Speech & Language , vol.17 , Issue.2 , pp. 137-152
    • Glass, J.R.1
  • 7
    • 77957744761 scopus 로고    scopus 로고
    • Structured log linear models for noise robust speech recognition
    • S. Zhang, A. Ragni, and M. Gales, "Structured log linear models for noise robust speech recognition, " Signal Processing Letters, IEEE, vol. 17, no. 11, pp. 945-948, 2010.
    • (2010) Signal Processing Letters, IEEE , vol.17 , Issue.11 , pp. 945-948
    • Zhang, S.1    Ragni, A.2    Gales, M.3
  • 11
    • 84906282118 scopus 로고    scopus 로고
    • Deep segmental neural networks for speech recognition
    • O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, "Deep segmental neural networks for speech recognition, " in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Abdel-Hamid, O.1    Deng, L.2    Yu, D.3    Jiang, H.4
  • 15
    • 84876691724 scopus 로고    scopus 로고
    • Conditional random fields in speech, audio, and language processing
    • E. Fosler-Lussier, Y. He, P. Jyothi, and R. Prabhavalkar, "Conditional random fields in speech, audio, and language processing, " Proceedings of the IEEE, vol. 101, no. 5, pp. 1054-1075, 2013.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.5 , pp. 1054-1075
    • Fosler-Lussier, E.1    He, Y.2    Jyothi, P.3    Prabhavalkar, R.4
  • 16
    • 34047192804 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • Vancouver, British Columbia, Canada, Dec
    • S. Sarawagi andW. W. Cohen, "Semi-Markov conditional random fields for information extraction, " in Advances in Neural Information Processing Systems (NIPS'04), Vancouver, British Columbia, Canada, Dec. 2004, pp. 1185-1192.
    • (2004) Advances in Neural Information Processing Systems (NIPS'04) , pp. 1185-1192
    • Sarawagi, W.S.1    Cohen, W.2
  • 18
    • 85075929453 scopus 로고    scopus 로고
    • Speech recognition with weighted finite-state transducers
    • Springer
    • M. Mohri, F. Pereira, and M. Riley, "Speech recognition with weighted finite-state transducers, " in Springer Handbook of Speech Processing. Springer, 2008, pp. 559-584.
    • (2008) Springer Handbook of Speech Processing , pp. 559-584
    • Mohri, M.1    Pereira, F.2    Riley, M.3
  • 21
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling, " in Proc. of ICASSP, 2009, pp. 3761-3764.
    • (2009) Proc. of ICASSP , pp. 3761-3764
    • Kingsbury, B.1
  • 22
    • 84906274730 scopus 로고    scopus 로고
    • Sequencediscriminative training of deep neural networks
    • K. Vesely, A. Ghoshal, L. Burget, and D. Povey, "Sequencediscriminative training of deep neural networks, " in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Vesely, K.1    Ghoshal, A.2    Burget, L.3    Povey, D.4
  • 23
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization, " J. Mach. Learn. Res., vol. 12, pp. 2121-2159, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 24
    • 85032750905 scopus 로고    scopus 로고
    • Discriminative learning in sequential pattern recognition
    • Sep
    • X. He, L. Deng, and W. Chou, "Discriminative learning in sequential pattern recognition, " IEEE Signal Processing Magazine, vol. 25, no. 5, pp. 14-36, Sep. 2008.
    • (2008) IEEE Signal Processing Magazine , vol.25 , Issue.5 , pp. 14-36
    • He, X.1    Deng, L.2    Chou, W.3
  • 29
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • A. J. Robinson, "An application of recurrent nets to phone probability estimation, " Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 298-305, 1994.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.