메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1219-1223

A comparison of training approaches for discriminative segmental models

Author keywords

Empirical bayes risk; Large margin training; Segmental conditional random fields; Speech recognition

Indexed keywords

COST FUNCTIONS; RANDOM PROCESSES; SPEECH COMMUNICATION;

EID: 84910091098     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (35)
  • 2
    • 0038359548 scopus 로고    scopus 로고
    • A probabilistic framework for segment-based speech recognition
    • J. R. Glass, "A probabilistic framework for segment-based speech recognition, " Computer Speech and Language, vol. 17, no. 2, pp. 137-152, 2003.
    • (2003) Computer Speech and Language , vol.17 , Issue.2 , pp. 137-152
    • Glass, J.R.1
  • 8
    • 85032751713 scopus 로고    scopus 로고
    • Discriminative training for automatic speech recognition: Modeling, criteria, optimization, implementation, and performance
    • G. Heigold, H. Ney, R. Schlüter, and S. Wiesler, "Discriminative training for automatic speech recognition: Modeling, criteria, optimization, implementation, and performance, " IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 58-69, 2012.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 58-69
    • Heigold, G.1    Ney, H.2    Schlüter, R.3    Wiesler, S.4
  • 11
    • 29444447644 scopus 로고    scopus 로고
    • Lattice segmentation and minimum bayes risk discriminative training for large vocabulary continuous speech recognition
    • V. Doumpiotis and W. Byrne, "Lattice segmentation and minimum bayes risk discriminative training for large vocabulary continuous speech recognition, " Speech Communication, vol. 48, no. 2, pp. 142-160, 2006.
    • (2006) Speech Communication , vol.48 , Issue.2 , pp. 142-160
    • Doumpiotis, V.1    Byrne, W.2
  • 12
    • 84865756340 scopus 로고    scopus 로고
    • Structured support vector machines for noise robust continuous speech recognition
    • S.-X. Zhang and M. Gales, "Structured support vector machines for noise robust continuous speech recognition, " in Proc. Interspeech, 2011, pp. 989-992.
    • (2011) Proc. Interspeech , pp. 989-992
    • Zhang, S.-X.1    Gales, M.2
  • 18
    • 77957744761 scopus 로고    scopus 로고
    • Structured log linear models for noise robust speech recognition
    • IEEE
    • S.-X. Zhang, A. Ragni, and M. J. F. Gales, "Structured log linear models for noise robust speech recognition, " Signal Processing Letters, IEEE, vol. 17, no. 11, pp. 945-948, 2010.
    • (2010) Signal Processing Letters , vol.17 , Issue.11 , pp. 945-948
    • Zhang, S.-X.1    Ragni, A.2    Gales, M.J.F.3
  • 19
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization, " The Journal of Machine Learning Research, vol. 12, pp. 2121-2159, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 26
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • no. 2543-2596
    • L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization." Journal of Machine Learning Research, vol. 11, no. 2543-2596, p. 4, 2010.
    • (2010) Journal of Machine Learning Research , vol.11
    • Xiao, L.1
  • 27
    • 80052416457 scopus 로고    scopus 로고
    • Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty
    • Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty, " in ACL/AFNLP. Association for Computational Linguistics, 2009, pp. 477-485.
    • (2009) ACL/AFNLP. Association for Computational Linguistics , pp. 477-485
    • Tsuruoka, Y.1    Tsujii, J.2    Ananiadou, S.3
  • 29
    • 79960131832 scopus 로고    scopus 로고
    • Stochastic methods for l1- regularized loss minimization
    • S. Shalev-Shwartz and A. Tewari, "Stochastic methods for l1- regularized loss minimization, " Journal of Machine Learning Research, vol. 12, pp. 1865-1892, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1865-1892
    • Shalev-Shwartz, S.1    Tewari, A.2
  • 32
    • 79959814724 scopus 로고    scopus 로고
    • SCARF: A segmental conditional random field toolkit for speech recognition
    • G. Zweig and P. Nguyen, "SCARF: A segmental conditional random field toolkit for speech recognition, " Proc. Interspeech, 2010.
    • (2010) Proc. Interspeech
    • Zweig, G.1    Nguyen, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.