메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3625-3629

Rapid adaptation for deep neural networks through multi-task learning

Author keywords

CD DNN HMM; Deep neural networks; Multitask learning; Speaker adaptation

Indexed keywords

LEARNING SYSTEMS; LINEARIZATION; SPEECH COMMUNICATION; TELEPHONE SETS;

EID: 84959169347     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (84)

References (39)
  • 1
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selectedapplications in speech recognition
    • L. Rabiner, "A tutorial on hidden Markov models and selectedapplications in speech recognition, " Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 3
    • 33947635130 scopus 로고    scopus 로고
    • Regularized adaptation of discriminativeclassifiers
    • X. Li and J. Bilmes, "Regularized adaptation of discriminativeclassifiers, " in Proc. ICASSP, vol. 1, 2006, pp. I-I.
    • (2006) Proc. ICASSP , vol.1 , pp. I-I
    • Li, X.1    Bilmes, J.2
  • 4
    • 84890542079 scopus 로고    scopus 로고
    • KL-divergence regularizeddeep neural network adaptation for improved large vocabularyspeech recognition
    • D. Yu, K. Yao, H. Su, G. Li, and F. Seide, "KL-divergence regularizeddeep neural network adaptation for improved large vocabularyspeech recognition, " in Proc. ICASSP, 2013, pp. 7893-7897.
    • (2013) Proc. ICASSP , pp. 7893-7897
    • Yu, D.1    Yao, K.2    Su, H.3    Li, G.4    Seide, F.5
  • 6
    • 84871387302 scopus 로고    scopus 로고
    • The deep tensor neural networkwith applications to large vocabulary speech recognition
    • D. Yu, L. Deng, and S. Seide, "The deep tensor neural networkwith applications to large vocabulary speech recognition, " IEEETrans. Audio, Speech, and Language Processing, vol. 21, no. 2, pp. 388-396, 2013.
    • (2013) IEEETrans. Audio, Speech, and Language Processing , vol.21 , Issue.2 , pp. 388-396
    • Yu, D.1    Deng, L.2    Seide, S.3
  • 8
    • 34548012893 scopus 로고    scopus 로고
    • Linearhidden transformations for adaptation of hybrid ANN/HMMmodels
    • R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. D. Mori, "Linearhidden transformations for adaptation of hybrid ANN/HMMmodels, " Speech Communication, vol. 49, no. 10, pp. 827-835, 2007.
    • (2007) Speech Communication , vol.49 , Issue.10 , pp. 827-835
    • Gemello, R.1    Mana, F.2    Scanzio, S.3    Laface, P.4    Mori, R.D.5
  • 9
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineeringin context-dependent deep neural networks for conversationalspeech transcription
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineeringin context-dependent deep neural networks for conversationalspeech transcription, " in Proc. ASRU, 2011, pp. 24-29.
    • (2011) Proc. ASRU , pp. 24-29
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 11
    • 84893691530 scopus 로고    scopus 로고
    • Speaker adaptationof neural network acoustic models using i-vectors
    • G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, "Speaker adaptationof neural network acoustic models using i-vectors, " in Proc. ASRU, 2013, pp. 55-59.
    • (2013) Proc. ASRU , pp. 55-59
    • Saon, G.1    Soltau, H.2    Nahamoo, D.3    Picheny, M.4
  • 12
    • 84881054791 scopus 로고    scopus 로고
    • Hermitian polynomial forspeaker adaptation of connectionist speech recognition systems
    • S. M. Siniscalchi, J. Li, and C.-H. Lee, "Hermitian polynomial forspeaker adaptation of connectionist speech recognition systems, "IEEE Trans. Audio, Speech, and Language Processing, vol. 21, no. 10, pp. 2152-2161, 2013.
    • (2013) IEEE Trans. Audio, Speech, and Language Processing , vol.21 , Issue.10 , pp. 2152-2161
    • Siniscalchi, S.M.1    Li, J.2    Lee, C.-H.3
  • 13
    • 84906225505 scopus 로고    scopus 로고
    • Rapid and effective speaker adaptationof convolutional neural network based models for speechrecognition
    • O. Abdel-Hamid and H. Jiang, "Rapid and effective speaker adaptationof convolutional neural network based models for speechrecognition, " in Proc. INTERSPEECH, 2013, pp. 1248-1252.
    • (2013) Proc. INTERSPEECH , pp. 1248-1252
    • Abdel-Hamid, O.1    Jiang, H.2
  • 14
    • 84983119674 scopus 로고    scopus 로고
    • Learning hidden unit contributionsfor unsupervised speaker adaptation of neural networkacoustic models
    • P. Swietojanski and S. Renals, "Learning hidden unit contributionsfor unsupervised speaker adaptation of neural networkacoustic models, " in Proc. IEEE STL, 2014.
    • (2014) Proc. IEEE STL
    • Swietojanski, P.1    Renals, S.2
  • 15
    • 84905262902 scopus 로고    scopus 로고
    • Factorized adaptation for deepneural network
    • J. Li, J.-T. Huang, and Y. Gong, "Factorized adaptation for deepneural network, " in Proc. ICASSP, 2014.
    • (2014) Proc. ICASSP
    • Li, J.1    Huang, J.-T.2    Gong, Y.3
  • 16
    • 84890452886 scopus 로고    scopus 로고
    • Fast speaker adaptation of hybridNN/HMM model for speech recognition based on discriminativelearning of speaker code
    • O. Abdel-Hamid and H. Jiang, "Fast speaker adaptation of hybridNN/HMM model for speech recognition based on discriminativelearning of speaker code, " in Proc. ICASSP, 2013, pp. 7942-7946.
    • (2013) Proc. ICASSP , pp. 7942-7946
    • Abdel-Hamid, O.1    Jiang, H.2
  • 17
    • 84905284226 scopus 로고    scopus 로고
    • Direct adaptationof hybrid DNN/HMM model for fast speaker adaptationin LVCSR based on speaker code
    • S. Xue, O. Abdel-Hamid, H. Jiang, and L. Dai, "Direct adaptationof hybrid DNN/HMM model for fast speaker adaptationin LVCSR based on speaker code, " in Proc. ICASSP, 2014, pp. 6339-6343.
    • (2014) Proc. ICASSP , pp. 6339-6343
    • Xue, S.1    Abdel-Hamid, O.2    Jiang, H.3    Dai, L.4
  • 18
    • 84921731072 scopus 로고    scopus 로고
    • Fastadaptation of deep neural network based on discriminant codesfor speech recognition
    • S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu, "Fastadaptation of deep neural network based on discriminant codesfor speech recognition, " IEEE/ACM Trans. on Audio, Speech and Lang. Proc., vol. 22, no. 12, pp. 1713-1725, 2014.
    • (2014) IEEE/ACM Trans. on Audio, Speech and Lang. Proc , vol.22 , Issue.12 , pp. 1713-1725
    • Xue, S.1    Abdel-Hamid, O.2    Jiang, H.3    Dai, L.4    Liu, Q.5
  • 19
    • 0027683813 scopus 로고
    • Shared-distribution hiddenmarkov models for speech recognition
    • M.-Y. M.-Y. Hwang and X. Huang, "Shared-distribution hiddenmarkov models for speech recognition, " IEEE Trans. Speech and Audio Processing, vol. 1, no. 4, pp. 414-420, 1993.
    • (1993) IEEE Trans. Speech and Audio Processing , vol.1 , Issue.4 , pp. 414-420
    • Hwang, M.-Y.M.-Y.1    Huang, X.2
  • 20
    • 84938690750 scopus 로고    scopus 로고
    • Speaker adaptation of deepneural networks using a hierarchy of output layers
    • R. Price, I. Kenichi, and K. Shinoda, "Speaker adaptation of deepneural networks using a hierarchy of output layers, " in Proc. SLT, 2014.
    • (2014) Proc. SLT
    • Price, R.1    Kenichi, I.2    Shinoda, K.3
  • 22
    • 85121045899 scopus 로고
    • Multitask learning: A knowledge-based source of inductivebias
    • R. Caruna, "Multitask learning: A knowledge-based source of inductivebias, " in Proc. ICML, 1993, pp. 41-48.
    • (1993) Proc. ICML , pp. 41-48
    • Caruna, R.1
  • 23
    • 85009167968 scopus 로고    scopus 로고
    • Multitask learning in connectionistrobust asr using recurrent neural networks
    • S. Parveen and P. Green, "Multitask learning in connectionistrobust asr using recurrent neural networks. " in Proc. INTERSPEECH, 2003.
    • (2003) Proc. INTERSPEECH
    • Parveen, S.1    Green, P.2
  • 25
    • 84890545600 scopus 로고    scopus 로고
    • Multi-task learning in deep neuralnetworks for improved phoneme recognition
    • M. Seltzer and J. Droppo, "Multi-task learning in deep neuralnetworks for improved phoneme recognition, " in Proc. ICASSP, 2013, pp. 6965-6969.
    • (2013) Proc. ICASSP , pp. 6965-6969
    • Seltzer, M.1    Droppo, J.2
  • 26
    • 84976230656 scopus 로고    scopus 로고
    • Learning auxiliarycategorization for neural network based speech synthesis
    • Z. Wen, K. Li, Z. Huang, J. Tao, and C.-H. Lee, "Learning auxiliarycategorization for neural network based speech synthesis, "2015, submitted to INTERSPEECH.
    • (2015) INTERSPEECH
    • Wen, Z.1    Li, K.2    Huang, Z.3    Tao, J.4    Lee, C.-H.5
  • 27
    • 84959100788 scopus 로고    scopus 로고
    • Multiobjectivelearning and mask-based post-processing for deep neuralnetwork based speech enhancement
    • Y. Xu, J. Du, Z. Huang, L.-R. Dai, and C.-H. Lee, "Multiobjectivelearning and mask-based post-processing for deep neuralnetwork based speech enhancement, " 2015, submitted to INTERSPEECH.
    • (2015) INTERSPEECH
    • Xu, Y.1    Du, J.2    Huang, Z.3    Dai, L.-R.4    Lee, C.-H.5
  • 30
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionalityof data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionalityof data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 32
    • 84910035297 scopus 로고    scopus 로고
    • Learning small-sizednn with output-distribution-based criteria
    • J. Li, R. Zhao, J.-T. Huang, and Y. Gong, "Learning small-sizednn with output-distribution-based criteria, " in Proc. Interspeech, 2014.
    • (2014) Proc. Interspeech
    • Li, J.1    Zhao, R.2    Huang, J.-T.3    Gong, Y.4
  • 33
    • 0029288633 scopus 로고
    • Maximum likelihood linearregression for speaker adaptation of continuous density hiddenMarkov models
    • C. J. Leggetter and P. C. Woodland, "Maximum likelihood linearregression for speaker adaptation of continuous density hiddenMarkov models, " Computer Speech & Language, vol. 9, no. 2, pp. 171-185, 1995.
    • (1995) Computer Speech & Language , vol.9 , Issue.2 , pp. 171-185
    • Leggetter, C.J.1    Woodland, P.C.2
  • 37
    • 84906227589 scopus 로고    scopus 로고
    • Restructuring of deep neural networkacoustic models with singular value decomposition
    • J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural networkacoustic models with singular value decomposition. " in INTERSPEECH, 2013, pp. 2365-2369.
    • (2013) INTERSPEECH , pp. 2365-2369
    • Xue, J.1    Li, J.2    Gong, Y.3
  • 38
    • 84905229915 scopus 로고    scopus 로고
    • Singular value decompositionbased low-footprint speaker adaptation and personalizationfor deep neural network
    • J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, "Singular value decompositionbased low-footprint speaker adaptation and personalizationfor deep neural network, " in Proc. ICASSP, 2014.
    • (2014) Proc. ICASSP
    • Xue, J.1    Li, J.2    Yu, D.3    Seltzer, M.4    Gong, Y.5
  • 39
    • 84912109599 scopus 로고    scopus 로고
    • Speaker adaptation of hybridNN/HMM model for speech recognition based on singular valuedecomposition
    • S. Xue, H. Jiang, and L. Dai, "Speaker adaptation of hybridNN/HMM model for speech recognition based on singular valuedecomposition, " in Proc. ISCSLP, 2014.
    • (2014) Proc. ISCSLP
    • Xue, S.1    Jiang, H.2    Dai, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.