메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3330-3334

Sequence-to-sequence neural net models for grapheme-to-phoneme conversion

Author keywords

Grapheme to phoneme conversion; Neural networks; Sequence to sequence neural networks

Indexed keywords

COMPUTATIONAL LINGUISTICS; NEURAL NETWORKS; TRANSLATION (LANGUAGES);

EID: 84959120024     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (66)

References (31)
  • 2
    • 84926321124 scopus 로고    scopus 로고
    • Joint languageand translation modeling with recurrent neural networks
    • M. Auli, M. Galley, C. Quirk, and G. Zweig, "Joint languageand translation modeling with recurrent neural networks., "in EMNLP, 2013, pp. 1044-1054.
    • (2013) EMNLP , pp. 1044-1054
    • Auli, M.1    Galley, M.2    Quirk, C.3    Zweig, G.4
  • 3
    • 84926283798 scopus 로고    scopus 로고
    • Recurrent continuoustranslation nodels
    • N. Kalchbrenner and P. Blunsom, "Recurrent continuoustranslation nodels, " in EMNLP, 2013.
    • (2013) EMNLP
    • Kalchbrenner, N.1    Blunsom, P.2
  • 4
    • 84906921986 scopus 로고    scopus 로고
    • Fast and robust neural network joint modelsfor statistical machine translation
    • J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, "Fast and robust neural network joint modelsfor statistical machine translation, " in ACL, 2014.
    • (2014) ACL
    • Devlin, J.1    Zbib, R.2    Huang, Z.3    Lamar, T.4    Schwartz, R.5    Makhoul, J.6
  • 5
    • 84928547704 scopus 로고    scopus 로고
    • Sequence tosequence learning with neural networks
    • H. Sutskever, O. Vinyals, and Q. V. Le, "Sequence tosequence learning with neural networks, " in NIPS, 2014.
    • (2014) NIPS
    • Sutskever, H.1    Vinyals, O.2    Le, Q.V.3
  • 6
    • 84961291354 scopus 로고    scopus 로고
    • Translation modeling with bidirectional recurrent neuralnetworks
    • M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney, "Translation modeling with bidirectional recurrent neuralnetworks, " in EMNLP, 2014.
    • (2014) EMNLP
    • Sundermeyer, M.1    Alkhouli, T.2    Wuebker, J.3    Ney, H.4
  • 11
    • 84874235486 scopus 로고    scopus 로고
    • Context dependent recurrentneural network language model
    • T. Mikolov and G. Zweig, "Context dependent recurrentneural network language model, " in SLT, 2012.
    • (2012) SLT
    • Mikolov, T.1    Zweig, G.2
  • 13
    • 84858966958 scopus 로고    scopus 로고
    • Strategies for training large scale neural networklanguage models
    • T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky, "Strategies for training large scale neural networklanguage models, " in ASRU, 2011.
    • (2011) ASRU
    • Mikolov, T.1    Deoras, A.2    Povey, D.3    Burget, L.4    Cernocky, J.5
  • 14
  • 18
    • 41049105254 scopus 로고    scopus 로고
    • Joint-sequence models forgrapheme-to-phoneme conversion
    • M. Bisani and H. Ney, "Joint-sequence models forgrapheme-to-phoneme conversion, " Speech communication, vol. 50, no. 5, pp. 434-451, 2008.
    • (2008) Speech Communication , vol.50 , Issue.5 , pp. 434-451
    • Bisani, M.1    Ney, H.2
  • 19
    • 85009227369 scopus 로고    scopus 로고
    • Conditional and joint models for grapheme-tophonemeconversion
    • S. Chen, "Conditional and joint models for grapheme-tophonemeconversion, " in EUROSPEECH, 2003.
    • (2003) EUROSPEECH
    • Chen, S.1
  • 20
    • 0002652285 scopus 로고    scopus 로고
    • A maximumentropy approach to natural language processing
    • A. Berger, S. Della Pietra, and V. Della Pietra, "A maximumentropy approach to natural language processing, "Computational Ling., vol. 22, no. 1, pp. 39-71.
    • Computational Ling , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.1    Della Pietra, S.2    Della Pietra, V.3
  • 24
    • 84946687066 scopus 로고    scopus 로고
    • Spoken language understand ing using long short-termmemory neural networks
    • K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, "Spoken language understand ing using long short-termmemory neural networks, " in SLT, 2014.
    • (2014) SLT
    • Yao, K.1    Peng, B.2    Zhang, Y.3    Yu, D.4    Zweig, G.5    Shi, Y.6
  • 27
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithmfor online training of recurrent network trajectories
    • R. Williams and J. Peng, "An efficient gradient-based algorithmfor online training of recurrent network trajectories, "Neural Computation, vol. 2, pp. 490-501, 1990.
    • (1990) Neural Computation , vol.2 , pp. 490-501
    • Williams, R.1    Peng, J.2
  • 28
    • 0031268931 scopus 로고    scopus 로고
    • Bidirectional recurrent neuralnetworks
    • M. Schuster and K. Paliwal, "Bidirectional recurrent neuralnetworks, " IEEE Trans. on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.
    • (1997) IEEE Trans. on Signal Processing , vol.45 , Issue.11 , pp. 2673-2681
    • Schuster, M.1    Paliwal, K.2
  • 29
    • 84906237242 scopus 로고    scopus 로고
    • Investigationof recurrent-neural-network architectures and learningmethods for language understand ing
    • G. Mesnil, X. He, L. Deng, and Y. Bengio, "Investigationof recurrent-neural-network architectures and learningmethods for language understand ing, " in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Mesnil, G.1    He, X.2    Deng, L.3    Bengio, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.