메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3605-3609

Structured output layer with auxiliary targets for context-dependent acoustic modelling

Author keywords

Adaptation; Deep neural networks; Multitask learning; Structured output layer

Indexed keywords

SPEECH RECOGNITION; TREES (MATHEMATICS);

EID: 84959095902     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (42)
  • 1
    • 0028530231 scopus 로고
    • State clustering in hidden Markov model-based continuous speech recognition
    • S. J. Young and P. C. Woodland, "State clustering in hidden Markov model-based continuous speech recognition, " Computer Speech & Language, vol. 8, no. 4, pp. 369-383, 1994.
    • (1994) Computer Speech & Language , vol.8 , Issue.4 , pp. 369-383
    • Young, S.J.1    Woodland, P.C.2
  • 5
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
    • G. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition, " IEEE Transactions on Audio, Speech and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Transactions on Audio, Speech and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 6
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-dependent deep neural networks, " in Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Seide, F.1    Li, G.2    Yu, D.3
  • 7
    • 84872565703 scopus 로고
    • Factoring networks by a statistical method
    • N. Morgan and H. Bourlard, "Factoring networks by a statistical method, " Neural Computation, vol. 4, no. 6, pp. 835-838, 1992.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 835-838
    • Morgan, N.1    Bourlard, H.2
  • 8
    • 85009078709 scopus 로고
    • CDNN: A context dependent neural network for continuous speech recognition
    • H. Bourlard, N. Morgan, C. Wooters, and S. Renals, "CDNN: A context dependent neural network for continuous speech recognition, " in Proc. ICASSP, vol. 2, 1992, pp. 349-352.
    • (1992) Proc. ICASSP , vol.2 , pp. 349-352
    • Bourlard, H.1    Morgan, N.2    Wooters, C.3    Renals, S.4
  • 9
    • 0028464214 scopus 로고
    • Context-dependent connectionist probability estimation in a hybrid HMM-neural net speech recognition system
    • H. Franco, M. Cohen, N. Morgan, D. Rumelhart, and V. Abrash, "Context-dependent connectionist probability estimation in a hybrid HMM-neural net speech recognition system, " Computer Speech and Language, vol. 8, pp. 211-222, 1994.
    • (1994) Computer Speech and Language , vol.8 , pp. 211-222
    • Franco, H.1    Cohen, M.2    Morgan, N.3    Rumelhart, D.4    Abrash, V.5
  • 10
    • 84916199887 scopus 로고    scopus 로고
    • Regression-based context-dependent modeling of deep neural networks for speech recognition
    • Nov
    • G. Wang and K. C. Sim, "Regression-based context-dependent modeling of deep neural networks for speech recognition, " Audio, Speech, and Language Processing, IEEE/ACM Transactions on, vol. 22, no. 11, pp. 1660-1669, Nov 2014.
    • (2014) Audio, Speech, and Language Processing, IEEE/ACM Transactions on , vol.22 , Issue.11 , pp. 1660-1669
    • Wang, G.1    Sim, K.C.2
  • 11
    • 84905269216 scopus 로고    scopus 로고
    • Context dependent state tying for speech recognition using deep neural network acoustic models
    • M. Bacchiani and D. Rybach, "Context dependent state tying for speech recognition using deep neural network acoustic models, " in Proc. ICASSP, 2014, pp. 230-234.
    • (2014) Proc. ICASSP , pp. 230-234
    • Bacchiani, M.1    Rybach, D.2
  • 12
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription, " in Proc. ASRU, 2011.
    • (2011) Proc. ASRU
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 14
    • 84874278045 scopus 로고    scopus 로고
    • Unsupervised crosslingual knowledge transfer in DNN-based LVCSR
    • December
    • P. Swietojanski, A. Ghoshal, and S. Renals, "Unsupervised crosslingual knowledge transfer in DNN-based LVCSR, " in Proc. IEEE SLT, December 2012, pp. 246-251.
    • (2012) Proc. IEEE SLT , pp. 246-251
    • Swietojanski, P.1    Ghoshal, A.2    Renals, S.3
  • 15
    • 84906273501 scopus 로고    scopus 로고
    • Improving low-resource cd-dnn-hmm using dropout and multilingual dnn training
    • Y. Miao and F. Metze, "Improving low-resource cd-dnn-hmm using dropout and multilingual dnn training. " in Proc. Interspeech. ISCA, 2013, pp. 2237-2241.
    • (2013) Proc. Interspeech. ISCA , pp. 2237-2241
    • Miao, Y.1    Metze, F.2
  • 16
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana, "Multitask learning, " Machine learning, vol. 28, pp. 41-75, 1997.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 17
    • 84910044198 scopus 로고    scopus 로고
    • Multitask learning in connectionist robust ASR using recurrent neural networks
    • S. Parveen and P. Green, "Multitask learning in connectionist robust ASR using recurrent neural networks, " in Proc. Interspeech, 2003.
    • (2003) Proc. Interspeech
    • Parveen, S.1    Green, P.2
  • 18
    • 84890527497 scopus 로고    scopus 로고
    • Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers
    • J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, "Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Huang, J.-T.1    Li, J.2    Yu, D.3    Deng, L.4    Gong, Y.5
  • 22
    • 84946094751 scopus 로고    scopus 로고
    • Regularization of context-dependent deep neural networks with context-independent multi-task training
    • P. Bell and S. Renals, "Regularization of context-dependent deep neural networks with context-independent multi-task training, " in Proc. ICASSP, 2015.
    • (2015) Proc. ICASSP
    • Bell, P.1    Renals, S.2
  • 24
    • 84905283791 scopus 로고    scopus 로고
    • Joint acoustic modelling of triphones and trigraphemes by multi-task learning deep neural networks for low-resource speech recognition
    • D. Chen, B. Mak, C.-C. Leung, and S. Sivadas, "Joint acoustic modelling of triphones and trigraphemes by multi-task learning deep neural networks for low-resource speech recognition, " in Proc. ICASSP, 2014.
    • (2014) Proc. ICASSP
    • Chen, D.1    Mak, B.2    Leung, C.-C.3    Sivadas, S.4
  • 25
    • 84890545600 scopus 로고    scopus 로고
    • Multi-task learning in deep neural networks for improved phoneme recognition
    • M. Seltzer and J. Droppo, "Multi-task learning in deep neural networks for improved phoneme recognition, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Seltzer, M.1    Droppo, J.2
  • 29
    • 85001124710 scopus 로고    scopus 로고
    • Wit3: Web inventory of transcribed and translated talks
    • M. Cettolo, C. Girardi, and M. Federico, "Wit3: Web inventory of transcribed and translated talks, " in Proc EAMT, 2012, pp. 261-268.
    • (2012) Proc EAMT , pp. 261-268
    • Cettolo, M.1    Girardi, C.2    Federico, M.3
  • 30
    • 85016587886 scopus 로고
    • SWITCHBOARD: Telephone speech corpus for research and development
    • J. J. Godfrey, E. C. Holliman, and J. McDaniel, "SWITCHBOARD: Telephone speech corpus for research and development, " in Proc. ICASSP. IEEE, 1992, pp. 517-520.
    • (1992) Proc. ICASSP. IEEE , pp. 517-520
    • Godfrey, J.J.1    Holliman, E.C.2    McDaniel, J.3
  • 32
    • 84890492591 scopus 로고    scopus 로고
    • Revisiting hybrid and GMM-HMM system combination techniques
    • P. Swietojanski, A. Ghoshal, and S. Renals, "Revisiting hybrid and GMM-HMM system combination techniques, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Swietojanski, P.1    Ghoshal, A.2    Renals, S.3
  • 34
    • 0025041264 scopus 로고
    • Perceptual linear predictive (PLP) analysis of speech
    • Apr.
    • H. Hermansky, "Perceptual linear predictive (PLP) analysis of speech, " The Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738-1752, Apr. 1990.
    • (1990) The Journal of the Acoustical Society of America , vol.87 , Issue.4 , pp. 1738-1752
    • Hermansky, H.1
  • 35
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, "Low-rank matrix factorization for deep neural network training with high-dimensional output targets. " in Proc. ICASSP, 2013, pp. 6655-6659.
    • (2013) Proc. ICASSP , pp. 6655-6659
    • Sainath, T.N.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 37
    • 84906274730 scopus 로고    scopus 로고
    • Sequencediscriminative training of deep neural networks
    • Lyon, France, August
    • K. Vesely, A. Ghoshal, L. Burget, and D. Povey, "Sequencediscriminative training of deep neural networks, " in Proc. Interspeech, Lyon, France, August 2013.
    • (2013) Proc. Interspeech
    • Vesely, K.1    Ghoshal, A.2    Burget, L.3    Povey, D.4
  • 39
    • 84938690750 scopus 로고    scopus 로고
    • Speaker adaptation of deep neural networks using a hierarchy of output layers
    • R. Price, K. Iso, and K. Shinoda, "Speaker adaptation of deep neural networks using a hierarchy of output layers, " in Proc. IEEE SLT, 2014.
    • (2014) Proc. IEEE SLT
    • Price, R.1    Iso, K.2    Shinoda, K.3
  • 40
    • 84983119674 scopus 로고    scopus 로고
    • Learning hidden unit contributions for unsupervised speaker adaptation of neural network acoustic models
    • P. Swietojanski and S. Renals, "Learning hidden unit contributions for unsupervised speaker adaptation of neural network acoustic models, " in Proc. IEEE SLT, 2014.
    • (2014) Proc. IEEE SLT
    • Swietojanski, P.1    Renals, S.2
  • 41
    • 84906225505 scopus 로고    scopus 로고
    • Rapid and effective speaker adaptation of convolutional neural network based models for speech recognition
    • O. Abdel-Hamid and H. Jiang, "Rapid and effective speaker adaptation of convolutional neural network based models for speech recognition. " in Proc. Interspeech. ISCA, pp. 1248-1252.
    • Proc. Interspeech. ISCA , pp. 1248-1252
    • Abdel-Hamid, O.1    Jiang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.