메뉴 건너뛰기




Volumn 32, Issue 3, 2016, Pages 176-188

Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling

Author keywords

Branching; Germination; Hormones; Parasitism; Proteolysis

Indexed keywords

AUXIN; BUTENOLIDE; D14 PROTEIN; F BOX PROTEIN; GIBBERELLIN; HYDROLASE; JASMONIC ACID; KAI2 PROTEIN; KARRIKIN; MAX2 PROTEIN; PHYTOHORMONE; PROTEASOME; SMXL PROTEIN; STRIGOLACTONE; UNCLASSIFIED DRUG; 3-METHYL-2H-FURO(2,3-C)PYRAN-2-ONE; FURAN DERIVATIVE; LACTONE; PYRAN DERIVATIVE;

EID: 84958780056     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2016.01.002     Document Type: Review
Times cited : (95)

References (85)
  • 1
    • 70350290228 scopus 로고    scopus 로고
    • 2H-Furo[2,3-c]pyran-2-ones as germination stimulants present in smoke
    • 2H-Furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J. Agric. Food Chem. 2009, 57:9475-9480.
    • (2009) J. Agric. Food Chem. , vol.57 , pp. 9475-9480
    • Flematti, G.R.1
  • 2
    • 4043144379 scopus 로고    scopus 로고
    • A compound from smoke that promotes seed germination
    • Flematti G.R., et al. A compound from smoke that promotes seed germination. Science 2004, 305:977.
    • (2004) Science , vol.305 , pp. 977
    • Flematti, G.R.1
  • 3
    • 84864819167 scopus 로고    scopus 로고
    • Regulation of seed germination and seedling growth by chemical signals from burning vegetation
    • Nelson D.C., et al. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 2012, 63:107-130.
    • (2012) Annu. Rev. Plant Biol. , vol.63 , pp. 107-130
    • Nelson, D.C.1
  • 4
    • 77951051263 scopus 로고    scopus 로고
    • Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana
    • Nelson D.C., et al. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7095-7100.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7095-7100
    • Nelson, D.C.1
  • 5
    • 60249084572 scopus 로고    scopus 로고
    • Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light
    • Nelson D.C., et al. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 2009, 149:863-873.
    • (2009) Plant Physiol. , vol.149 , pp. 863-873
    • Nelson, D.C.1
  • 6
    • 33646687081 scopus 로고    scopus 로고
    • H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent
    • H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 2006, 98:98-105.
    • (2006) Field Crops Res. , vol.98 , pp. 98-105
    • van Staden, J.1
  • 7
    • 33749023591 scopus 로고    scopus 로고
    • Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide
    • Kulkarni M.G., et al. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J. Agron. Crop Sci. 2006, 192:395-398.
    • (2006) J. Agron. Crop Sci. , vol.192 , pp. 395-398
    • Kulkarni, M.G.1
  • 8
    • 33751538407 scopus 로고    scopus 로고
    • A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination
    • Jain N., et al. A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regul. 2006, 49:263-267.
    • (2006) Plant Growth Regul. , vol.49 , pp. 263-267
    • Jain, N.1
  • 9
    • 0000502250 scopus 로고
    • Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant
    • Cook C.E., et al. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 1966, 154:1189-1190.
    • (1966) Science , vol.154 , pp. 1189-1190
    • Cook, C.E.1
  • 10
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1
  • 11
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan V., et al. Strigolactone inhibition of shoot branching. Nature 2008, 455:189-194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1
  • 12
    • 84866412775 scopus 로고    scopus 로고
    • The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis
    • Kohlen W., et al. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 2012, 196:535-547.
    • (2012) New Phytol. , vol.196 , pp. 535-547
    • Kohlen, W.1
  • 13
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara M., et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455:195-200.
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1
  • 14
    • 78650751473 scopus 로고    scopus 로고
    • Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
    • Kapulnik Y., et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 2011, 233:209-216.
    • (2011) Planta , vol.233 , pp. 209-216
    • Kapulnik, Y.1
  • 15
    • 79551696791 scopus 로고    scopus 로고
    • Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
    • Ruyter-Spira C., et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiol. 2011, 155:721-734.
    • (2011) Plant Physiol. , vol.155 , pp. 721-734
    • Ruyter-Spira, C.1
  • 16
    • 84859356651 scopus 로고    scopus 로고
    • Strigolactones suppress adventitious rooting in Arabidopsis and pea
    • Rasmussen A., et al. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 2012, 158:1976-1987.
    • (2012) Plant Physiol. , vol.158 , pp. 1976-1987
    • Rasmussen, A.1
  • 17
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg P., et al. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129:1131-1141.
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1
  • 18
    • 84924348352 scopus 로고    scopus 로고
    • Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108
    • Lauressergues D., et al. Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. J. Exp. Bot. 2015, 66:1237-1244.
    • (2015) J. Exp. Bot. , vol.66 , pp. 1237-1244
    • Lauressergues, D.1
  • 19
    • 84884905503 scopus 로고    scopus 로고
    • Carlactone-independent seedling morphogenesis in Arabidopsis
    • Scaffidi A., et al. Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 2013, 76:1-9.
    • (2013) Plant J. , vol.76 , pp. 1-9
    • Scaffidi, A.1
  • 20
    • 84940946044 scopus 로고    scopus 로고
    • Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis
    • Ueda H., Kusaba M. Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol. 2015, 169:138-147.
    • (2015) Plant Physiol. , vol.169 , pp. 138-147
    • Ueda, H.1    Kusaba, M.2
  • 21
    • 84904960554 scopus 로고    scopus 로고
    • Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency
    • Yamada Y., et al. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 2014, 240:399-408.
    • (2014) Planta , vol.240 , pp. 399-408
    • Yamada, Y.1
  • 22
    • 84055224111 scopus 로고    scopus 로고
    • Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants
    • Agusti J., et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20242-20247.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20242-20247
    • Agusti, J.1
  • 23
    • 84921022340 scopus 로고    scopus 로고
    • Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis
    • Zhang Y., et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 2014, 10:1028-1033.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 1028-1033
    • Zhang, Y.1
  • 24
    • 84893422174 scopus 로고    scopus 로고
    • Carlactone is an endogenous biosynthetic precursor for strigolactones
    • Seto Y., et al. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:1640-1645.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 1640-1645
    • Seto, Y.1
  • 25
    • 84919363337 scopus 로고    scopus 로고
    • Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro
    • Abe S., et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:18084-18089.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 18084-18089
    • Abe, S.1
  • 26
    • 84863676736 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones
    • Waters M.T., et al. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012, 159:1073-1085.
    • (2012) Plant Physiol. , vol.159 , pp. 1073-1085
    • Waters, M.T.1
  • 27
    • 84858301666 scopus 로고    scopus 로고
    • The path from beta-carotene to carlactone, a strigolactone-like plant hormone
    • Alder A., et al. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335:1348-1351.
    • (2012) Science , vol.335 , pp. 1348-1351
    • Alder, A.1
  • 28
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin H., et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 2009, 21:1512-1525.
    • (2009) Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1
  • 29
    • 84858291479 scopus 로고    scopus 로고
    • A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
    • Kretzschmar T., et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 2012, 483:341-344.
    • (2012) Nature , vol.483 , pp. 341-344
    • Kretzschmar, T.1
  • 30
    • 84924812547 scopus 로고    scopus 로고
    • Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport
    • Sasse J., et al. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr. Biol. 2015, 25:647-655.
    • (2015) Curr. Biol. , vol.25 , pp. 647-655
    • Sasse, J.1
  • 31
    • 84951190751 scopus 로고    scopus 로고
    • Influx and efflux of strigolactones are actively regulated and involve the cell-trafficking system
    • Fridlender M., et al. Influx and efflux of strigolactones are actively regulated and involve the cell-trafficking system. Mol. Plant 2015, 8:1809-1812.
    • (2015) Mol. Plant , vol.8 , pp. 1809-1812
    • Fridlender, M.1
  • 32
    • 79957699893 scopus 로고    scopus 로고
    • F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
    • Nelson D.C., et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8897-8902.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8897-8902
    • Nelson, D.C.1
  • 33
    • 68949130180 scopus 로고    scopus 로고
    • D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
    • Arite T., et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009, 50:1416-1424.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1416-1424
    • Arite, T.1
  • 34
    • 84863230556 scopus 로고    scopus 로고
    • Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis
    • Waters M.T., et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012, 139:1285-1295.
    • (2012) Development , vol.139 , pp. 1285-1295
    • Waters, M.T.1
  • 35
    • 84868514386 scopus 로고    scopus 로고
    • DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
    • Hamiaux C., et al. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 2012, 22:2032-2036.
    • (2012) Curr. Biol. , vol.22 , pp. 2032-2036
    • Hamiaux, C.1
  • 36
    • 84861371605 scopus 로고    scopus 로고
    • MAX2 affects multiple hormones to promote photomorphogenesis
    • Shen H., et al. MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant 2012, 5:750-762.
    • (2012) Mol. Plant , vol.5 , pp. 750-762
    • Shen, H.1
  • 37
    • 84903650267 scopus 로고    scopus 로고
    • Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis
    • Scaffidi A., et al. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 2014, 165:1221-1232.
    • (2014) Plant Physiol. , vol.165 , pp. 1221-1232
    • Scaffidi, A.1
  • 38
    • 84949668181 scopus 로고    scopus 로고
    • SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis
    • Soundappan I., et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 2015, 27:3143-3159.
    • (2015) Plant Cell , vol.27 , pp. 3143-3159
    • Soundappan, I.1
  • 39
    • 84930741399 scopus 로고    scopus 로고
    • Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis
    • Umehara M., et al. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 2015, 56:1059-1072.
    • (2015) Plant Cell Physiol. , vol.56 , pp. 1059-1072
    • Umehara, M.1
  • 40
    • 84946500797 scopus 로고    scopus 로고
    • Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3
    • Zhao L.H., et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 2015, 25:1219-1236.
    • (2015) Cell Res. , vol.25 , pp. 1219-1236
    • Zhao, L.H.1
  • 41
    • 84933674049 scopus 로고    scopus 로고
    • Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark
    • Kameoka H., Kyozuka J. Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. J. Genet. Genomics 2015, 42:119-124.
    • (2015) J. Genet. Genomics , vol.42 , pp. 119-124
    • Kameoka, H.1    Kyozuka, J.2
  • 42
    • 84873058168 scopus 로고    scopus 로고
    • Structures of D14 and D14L in the strigolactone and karrikin signaling pathways
    • Kagiyama M., et al. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 2013, 18:147-160.
    • (2013) Genes Cells , vol.18 , pp. 147-160
    • Kagiyama, M.1
  • 43
    • 84886242440 scopus 로고    scopus 로고
    • Molecular mechanism of strigolactone perception by DWARF14
    • Nakamura H., et al. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 2013, 4:2613.
    • (2013) Nat. Commun. , vol.4 , pp. 2613
    • Nakamura, H.1
  • 44
    • 84874661987 scopus 로고    scopus 로고
    • Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14
    • Zhao L.H., et al. Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 2013, 23:436-439.
    • (2013) Cell Res. , vol.23 , pp. 436-439
    • Zhao, L.H.1
  • 45
    • 84899132374 scopus 로고    scopus 로고
    • Strigolactone promotes degradation of DWARF14, an alpha/beta hydrolase essential for strigolactone signaling in Arabidopsis
    • Chevalier F., et al. Strigolactone promotes degradation of DWARF14, an alpha/beta hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 2014, 26:1134-1150.
    • (2014) Plant Cell , vol.26 , pp. 1134-1150
    • Chevalier, F.1
  • 46
    • 84877857613 scopus 로고    scopus 로고
    • Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis
    • Guo Y., et al. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:8284-8289.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 8284-8289
    • Guo, Y.1
  • 47
    • 84938875505 scopus 로고    scopus 로고
    • A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones
    • Waters M.T., et al. A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 2015, 27:1925-1944.
    • (2015) Plant Cell , vol.27 , pp. 1925-1944
    • Waters, M.T.1
  • 48
    • 84929046052 scopus 로고    scopus 로고
    • Substrate-induced degradation of the alpha/beta-fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2
    • Waters M.T., et al. Substrate-induced degradation of the alpha/beta-fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2. Mol. Plant 2015, 8:814-817.
    • (2015) Mol. Plant , vol.8 , pp. 814-817
    • Waters, M.T.1
  • 49
    • 84906068442 scopus 로고    scopus 로고
    • The karrikin response system of Arabidopsis
    • Waters M.T., et al. The karrikin response system of Arabidopsis. Plant J. 2014, 79:623-631.
    • (2014) Plant J. , vol.79 , pp. 623-631
    • Waters, M.T.1
  • 50
    • 84940434457 scopus 로고    scopus 로고
    • PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants
    • Conn C.E., et al. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 2015, 349:540-543.
    • (2015) Science , vol.349 , pp. 540-543
    • Conn, C.E.1
  • 51
    • 84939810413 scopus 로고    scopus 로고
    • PARASITIC PLANTS. Probing strigolactone receptors in Striga hermonthica with fluorescence
    • Tsuchiya Y., et al. PARASITIC PLANTS. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 2015, 349:864-868.
    • (2015) Science , vol.349 , pp. 864-868
    • Tsuchiya, Y.1
  • 52
    • 84943534072 scopus 로고    scopus 로고
    • Structure-function analysis identifies highly sensitive strigolactone receptors in Striga
    • Toh S., et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 2015, 350:203-207.
    • (2015) Science , vol.350 , pp. 203-207
    • Toh, S.1
  • 53
    • 63549114117 scopus 로고    scopus 로고
    • Thinking outside the F-box: novel ligands for novel receptors
    • Somers D.E., Fujiwara S. Thinking outside the F-box: novel ligands for novel receptors. Trends Plant Sci. 2009, 14:206-213.
    • (2009) Trends Plant Sci. , vol.14 , pp. 206-213
    • Somers, D.E.1    Fujiwara, S.2
  • 54
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg P., et al. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 2007, 50:80-94.
    • (2007) Plant J. , vol.50 , pp. 80-94
    • Stirnberg, P.1
  • 55
    • 84902477596 scopus 로고    scopus 로고
    • DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching
    • Zhao J., et al. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol. 2014, 55:1096-1109.
    • (2014) Plant Cell Physiol. , vol.55 , pp. 1096-1109
    • Zhao, J.1
  • 56
    • 0035890987 scopus 로고    scopus 로고
    • Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins
    • Gray W.M., et al. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 2001, 414:271-276.
    • (2001) Nature , vol.414 , pp. 271-276
    • Gray, W.M.1
  • 57
    • 34547727206 scopus 로고    scopus 로고
    • JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling
    • Thines B., et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 2007, 448:661-665.
    • (2007) Nature , vol.448 , pp. 661-665
    • Thines, B.1
  • 58
    • 34547743829 scopus 로고    scopus 로고
    • The JAZ family of repressors is the missing link in jasmonate signalling
    • Chini A., et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007, 448:666-671.
    • (2007) Nature , vol.448 , pp. 666-671
    • Chini, A.1
  • 59
    • 34247219263 scopus 로고    scopus 로고
    • Mechanism of auxin perception by the TIR1 ubiquitin ligase
    • Tan X., et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446:640-645.
    • (2007) Nature , vol.446 , pp. 640-645
    • Tan, X.1
  • 60
    • 78549274705 scopus 로고    scopus 로고
    • Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
    • Sheard L.B., et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010, 468:400-405.
    • (2010) Nature , vol.468 , pp. 400-405
    • Sheard, L.B.1
  • 61
    • 57049155555 scopus 로고    scopus 로고
    • Gibberellin-induced DELLA recognition by the gibberellin receptor GID1
    • Murase K., et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 2008, 456:459-463.
    • (2008) Nature , vol.456 , pp. 459-463
    • Murase, K.1
  • 62
    • 84865850294 scopus 로고    scopus 로고
    • Gibberellin signaling: a theme and variations on DELLA repression
    • Hauvermale A.L., et al. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 2012, 160:83-92.
    • (2012) Plant Physiol. , vol.160 , pp. 83-92
    • Hauvermale, A.L.1
  • 63
    • 84883230977 scopus 로고    scopus 로고
    • SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
    • Stanga J.P., et al. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 2013, 163:318-330.
    • (2013) Plant Physiol. , vol.163 , pp. 318-330
    • Stanga, J.P.1
  • 64
    • 84890449326 scopus 로고    scopus 로고
    • DWARF 53 acts as a repressor of strigolactone signalling in rice
    • Jiang L., et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2013, 504:401-405.
    • (2013) Nature , vol.504 , pp. 401-405
    • Jiang, L.1
  • 65
    • 84890492360 scopus 로고    scopus 로고
    • D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling
    • Zhou F., et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 2013, 504:406-410.
    • (2013) Nature , vol.504 , pp. 406-410
    • Zhou, F.1
  • 66
    • 84949664392 scopus 로고    scopus 로고
    • Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation
    • Wang L., et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 2015, 27:3128-3142.
    • (2015) Plant Cell , vol.27 , pp. 3128-3142
    • Wang, L.1
  • 67
    • 77954981839 scopus 로고    scopus 로고
    • Strigolactones as germination stimulants for root parasitic plants
    • Yoneyama K., et al. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 2010, 51:1095-1103.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1095-1103
    • Yoneyama, K.1
  • 68
    • 84864532268 scopus 로고    scopus 로고
    • Origin of strigolactones in the green lineage
    • Delaux P.M., et al. Origin of strigolactones in the green lineage. New Phytol. 2012, 195:857-871.
    • (2012) New Phytol. , vol.195 , pp. 857-871
    • Delaux, P.M.1
  • 69
    • 84875698895 scopus 로고    scopus 로고
    • Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds
    • Flematti G.R., et al. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant 2013, 6:29-37.
    • (2013) Mol. Plant , vol.6 , pp. 29-37
    • Flematti, G.R.1
  • 70
    • 84956616973 scopus 로고    scopus 로고
    • Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone
    • Conn C.E., Nelson D.C. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci. 2016, 6:1219.
    • (2016) Front. Plant Sci. , vol.6 , pp. 1219
    • Conn, C.E.1    Nelson, D.C.2
  • 71
    • 79955414634 scopus 로고    scopus 로고
    • Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens
    • Proust H., et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 2011, 138:1531-1539.
    • (2011) Development , vol.138 , pp. 1531-1539
    • Proust, H.1
  • 72
    • 84902603093 scopus 로고    scopus 로고
    • Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens
    • Hoffmann B., et al. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLoS ONE 2014, 9:e99206.
    • (2014) PLoS ONE , vol.9 , pp. e99206
    • Hoffmann, B.1
  • 73
    • 84950272240 scopus 로고    scopus 로고
    • Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex
    • Gutjahr C., et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 2015, 350:1521-1524.
    • (2015) Science , vol.350 , pp. 1521-1524
    • Gutjahr, C.1
  • 74
    • 84868544963 scopus 로고    scopus 로고
    • The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis
    • Yoshida S., et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 2012, 196:1208-1216.
    • (2012) New Phytol. , vol.196 , pp. 1208-1216
    • Yoshida, S.1
  • 75
    • 79951738568 scopus 로고    scopus 로고
    • Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates
    • Flematti G.R., et al. Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J. Agric. Food Chem. 2011, 59:1195-1198.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 1195-1198
    • Flematti, G.R.1
  • 76
    • 84875741531 scopus 로고    scopus 로고
    • Confirming stereochemical structures of strigolactones produced by rice and tobacco
    • Xie X., et al. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant 2013, 6:153-163.
    • (2013) Mol. Plant , vol.6 , pp. 153-163
    • Xie, X.1
  • 77
    • 84875758299 scopus 로고    scopus 로고
    • A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2
    • Challis R.J., et al. A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol. 2013, 161:1885-1902.
    • (2013) Plant Physiol. , vol.161 , pp. 1885-1902
    • Challis, R.J.1
  • 78
    • 33744992478 scopus 로고    scopus 로고
    • TOPLESS regulates apical embryonic fate in Arabidopsis
    • Long J.A., et al. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006, 312:1520-1523.
    • (2006) Science , vol.312 , pp. 1520-1523
    • Long, J.A.1
  • 79
    • 84867888416 scopus 로고    scopus 로고
    • APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19
    • Krogan N.T., et al. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 2012, 139:4180-4190.
    • (2012) Development , vol.139 , pp. 4180-4190
    • Krogan, N.T.1
  • 80
    • 40449131628 scopus 로고    scopus 로고
    • TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
    • Szemenyei H., et al. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 2008, 319:1384-1386.
    • (2008) Science , vol.319 , pp. 1384-1386
    • Szemenyei, H.1
  • 81
    • 77950439369 scopus 로고    scopus 로고
    • NINJA connects the co-repressor TOPLESS to jasmonate signalling
    • Pauwels L., et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 2010, 464:788-791.
    • (2010) Nature , vol.464 , pp. 788-791
    • Pauwels, L.1
  • 82
    • 84855254094 scopus 로고    scopus 로고
    • The TOPLESS interactome: a framework for gene repression in Arabidopsis
    • Causier B., et al. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 2012, 158:423-438.
    • (2012) Plant Physiol. , vol.158 , pp. 423-438
    • Causier, B.1
  • 83
    • 84859010589 scopus 로고    scopus 로고
    • JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis
    • Shyu C., et al. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 2012, 24:536-550.
    • (2012) Plant Cell , vol.24 , pp. 536-550
    • Shyu, C.1
  • 84
    • 72949085967 scopus 로고    scopus 로고
    • Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis
    • Mashiguchi K., et al. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 2009, 73:2460-2465.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 2460-2465
    • Mashiguchi, K.1
  • 85
    • 84958814497 scopus 로고    scopus 로고
    • Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors
    • Ke J., et al. Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci. Adv. 2015, 1:e1500107.
    • (2015) Sci. Adv. , vol.1 , pp. e1500107
    • Ke, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.