-
1
-
-
23844506444
-
Multiple sclerosis pathology: Evolution of pathogenetic concepts
-
Lassmann, H. 2005. Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol. 15: 217-222.
-
(2005)
Brain Pathol.
, vol.15
, pp. 217-222
-
-
Lassmann, H.1
-
2
-
-
33846472053
-
CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE
-
Bailey, S. L., B. Schreiner, E. J. McMahon, and S. D. Miller. 2007. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 8: 172-180.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 172-180
-
-
Bailey, S.L.1
Schreiner, B.2
McMahon, E.J.3
Miller, S.D.4
-
3
-
-
65149093082
-
Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease
-
King, I. L., T. L. Dickendesher, and B. M. Segal. 2009. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113: 3190-3197.
-
(2009)
Blood
, vol.113
, pp. 3190-3197
-
-
King, I.L.1
Dickendesher, T.L.2
Segal, B.M.3
-
4
-
-
77349089236
-
Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation
-
Domínguez, P. M., and C. Ardavín. 2010. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev. 234: 90-104.
-
(2010)
Immunol. Rev.
, vol.234
, pp. 90-104
-
-
Domínguez, P.M.1
Ardavín, C.2
-
5
-
-
16244417773
-
Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis
-
McMahon, E. J., S. L. Bailey, C. V. Castenada, H. Waldner, and S. D. Miller. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11: 335-339.
-
(2005)
Nat. Med.
, vol.11
, pp. 335-339
-
-
McMahon, E.J.1
Bailey, S.L.2
Castenada, C.V.3
Waldner, H.4
Miller, S.D.5
-
6
-
-
16244380177
-
Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis
-
Greter, M., F. L. Heppner, M. P. Lemos, B. M. Odermatt, N. Goebels, T. Laufer, R. J. Noelle, and B. Becher. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11: 328-334.
-
(2005)
Nat. Med.
, vol.11
, pp. 328-334
-
-
Greter, M.1
Heppner, F.L.2
Lemos, M.P.3
Odermatt, B.M.4
Goebels, N.5
Laufer, T.6
Noelle, R.J.7
Becher, B.8
-
7
-
-
84931394611
-
Identification of cDC1-and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
-
Schlitzer, A., V. Sivakamasundari, J. Chen, H. R. Sumatoh, J. Schreuder, J. Lum, B. Malleret, S. Zhang, A. Larbi, F. Zolezzi, et al. 2015. Identification of cDC1-and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16: 718-728.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 718-728
-
-
Schlitzer, A.1
Sivakamasundari, V.2
Chen, J.3
Sumatoh, H.R.4
Schreuder, J.5
Lum, J.6
Malleret, B.7
Zhang, S.8
Larbi, A.9
Zolezzi, F.10
-
8
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
9
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman, R. C., K. K. Farh, C. B. Burge, and D. P. Bartel. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92-105.
-
(2009)
Genome Res.
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
Bartel, D.P.4
-
10
-
-
79952779639
-
MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases
-
Dai, R., and S. A. Ahmed. 2011. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 157: 163-179.
-
(2011)
Transl. Res.
, vol.157
, pp. 163-179
-
-
Dai, R.1
Ahmed, S.A.2
-
12
-
-
77149132365
-
Multiple sclerosis: MicroRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls
-
Keller, A., P. Leidinger, J. Lange, A. Borries, H. Schroers, M. Scheffler, H. P. Lenhof, K. Ruprecht, and E. Meese. 2009. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4: e7440.
-
(2009)
PLoS One
, vol.4
, pp. e7440
-
-
Keller, A.1
Leidinger, P.2
Lange, J.3
Borries, A.4
Schroers, H.5
Scheffler, M.6
Lenhof, H.P.7
Ruprecht, K.8
Meese, E.9
-
13
-
-
72649095061
-
MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47
-
Junker, A., M. Krumbholz, S. Eisele, H. Mohan, F. Augstein, R. Bittner, H. Lassmann, H. Wekerle, R. Hohlfeld, and E. Meinl. 2009. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132: 3342-3352.
-
(2009)
Brain
, vol.132
, pp. 3342-3352
-
-
Junker, A.1
Krumbholz, M.2
Eisele, S.3
Mohan, H.4
Augstein, F.5
Bittner, R.6
Lassmann, H.7
Wekerle, H.8
Hohlfeld, R.9
Meinl, E.10
-
14
-
-
34247483919
-
An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling
-
Fukao, T., Y. Fukuda, K. Kiga, J. Sharif, K. Hino, Y. Enomoto, A. Kawamura, K. Nakamura, T. Takeuchi, and M. Tanabe. 2007. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129: 617-631.
-
(2007)
Cell
, vol.129
, pp. 617-631
-
-
Fukao, T.1
Fukuda, Y.2
Kiga, K.3
Sharif, J.4
Hino, K.5
Enomoto, Y.6
Kawamura, A.7
Nakamura, K.8
Takeuchi, T.9
Tanabe, M.10
-
15
-
-
39849096995
-
Regulation of progenitor cell proliferation and granulocyte function by microRNA-223
-
Johnnidis, J. B., M. H. Harris, R. T. Wheeler, S. Stehling-Sun, M. H. Lam, O. Kirak, T. R. Brummelkamp, M. D. Fleming, and F. D. Camargo. 2008. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451: 1125-1129.
-
(2008)
Nature
, vol.451
, pp. 1125-1129
-
-
Johnnidis, J.B.1
Harris, M.H.2
Wheeler, R.T.3
Stehling-Sun, S.4
Lam, M.H.5
Kirak, O.6
Brummelkamp, T.R.7
Fleming, M.D.8
Camargo, F.D.9
-
16
-
-
84862150859
-
A novel regulator of macrophage activation: MiR-223 in obesity-associated adipose tissue inflammation
-
Zhuang, G., C. Meng, X. Guo, P. S. Cheruku, L. Shi, H. Xu, H. Li, G. Wang, A. R. Evans, S. Safe, et al. 2012. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125: 2892-2903.
-
(2012)
Circulation
, vol.125
, pp. 2892-2903
-
-
Zhuang, G.1
Meng, C.2
Guo, X.3
Cheruku, P.S.4
Shi, L.5
Xu, H.6
Li, H.7
Wang, G.8
Evans, A.R.9
Safe, S.10
-
17
-
-
71549167047
-
CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system
-
Mildner, A., M. Mack, H. Schmidt, W. Bruck, M. Djukic, M. D. Zabel, A. Hille, J. Priller, and M. Prinz. 2009. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132: 2487-2500.
-
(2009)
Brain
, vol.132
, pp. 2487-2500
-
-
Mildner, A.1
Mack, M.2
Schmidt, H.3
Bruck, W.4
Djukic, M.5
Zabel, M.D.6
Hille, A.7
Priller, J.8
Prinz, M.9
-
18
-
-
84904292341
-
Ischemic brain extract increases SDF-1 expression in astrocytes through the CXCR2/miR-223/miR-27b pathway
-
Shin, J. H., Y. M. Park, D. H. Kim, G. J. Moon, O. Y. Bang, T. Ohn, and H. H. Kim. 2014. Ischemic brain extract increases SDF-1 expression in astrocytes through the CXCR2/miR-223/miR-27b pathway. Biochim. Biophys. Acta 1839: 826-836.
-
(2014)
Biochim. Biophys. Acta
, vol.1839
, pp. 826-836
-
-
Shin, J.H.1
Park, Y.M.2
Kim, D.H.3
Moon, G.J.4
Bang, O.Y.5
Ohn, T.6
Kim, H.H.7
-
19
-
-
84937390806
-
STAT1: A novel target of miR-150 and miR-223 is involved in the proliferation of HTLV-I-transformed and ATL cells
-
Moles, R., M. Bellon, and C. Nicot. 2015. STAT1: A novel target of miR-150 and miR-223 Is involved in the proliferation of HTLV-I-transformed and ATL cells. Neoplasia 17: 449-462.
-
(2015)
Neoplasia
, vol.17
, pp. 449-462
-
-
Moles, R.1
Bellon, M.2
Nicot, C.3
-
20
-
-
0038302927
-
PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells
-
Loke, P., and J. P. Allison. 2003. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA 100: 5336-5341.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5336-5341
-
-
Loke, P.1
Allison, J.P.2
-
21
-
-
82755189251
-
Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/-mice precedes expression in the colon
-
Schaefer, J. S., D. Montufar-Solis, N. Vigneswaran, and J. R. Klein. 2011. Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/-mice precedes expression in the colon. J. Immunol. 187: 5834-5841.
-
(2011)
J. Immunol.
, vol.187
, pp. 5834-5841
-
-
Schaefer, J.S.1
Montufar-Solis, D.2
Vigneswaran, N.3
Klein, J.R.4
-
22
-
-
84908209291
-
Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation
-
Jeltsch, K. M., D. Hu, S. Brenner, J. Zöller, G. A. Heinz, D. Nagel, K. U. Vogel, N. Rehage, S. C. Warth, S. L. Edelmann, et al. 2014. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat. Immunol. 15: 1079-1089.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 1079-1089
-
-
Jeltsch, K.M.1
Hu, D.2
Brenner, S.3
Zöller, J.4
Heinz, G.A.5
Nagel, D.6
Vogel, K.U.7
Rehage, N.8
Warth, S.C.9
Edelmann, S.L.10
-
23
-
-
21144438325
-
A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity
-
Vinuesa, C. G., M. C. Cook, C. Angelucci, V. Athanasopoulos, L. Rui, K. M. Hill, D. Yu, H. Domaschenz, B. Whittle, T. Lambe, et al. 2005. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435: 452-458.
-
(2005)
Nature
, vol.435
, pp. 452-458
-
-
Vinuesa, C.G.1
Cook, M.C.2
Angelucci, C.3
Athanasopoulos, V.4
Rui, L.5
Hill, K.M.6
Yu, D.7
Domaschenz, H.8
Whittle, B.9
Lambe, T.10
-
24
-
-
84876775237
-
Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation
-
Pratama, A., R. R. Ramiscal, D. G. Silva, S. K. Das, V. Athanasopoulos, J. Fitch, N. K. Botelho, P. P. Chang, X. Hu, J. J. Hogan, et al. 2013. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38: 669-680.
-
(2013)
Immunity
, vol.38
, pp. 669-680
-
-
Pratama, A.1
Ramiscal, R.R.2
Silva, D.G.3
Das, S.K.4
Athanasopoulos, V.5
Fitch, J.6
Botelho, N.K.7
Chang, P.P.8
Hu, X.9
Hogan, J.J.10
-
25
-
-
49949116902
-
The impact of microRNAs on protein output
-
Baek, D., J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel. 2008. The impact of microRNAs on protein output. Nature 455: 64-71.
-
(2008)
Nature
, vol.455
, pp. 64-71
-
-
Baek, D.1
Villén, J.2
Shin, C.3
Camargo, F.D.4
Gygi, S.P.5
Bartel, D.P.6
-
26
-
-
79956116032
-
RORgt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
-
Codarri, L., G. Gyulvészi, V. Tosevski, L. Hesske, A. Fontana, L. Magnenat, T. Suter, and B. Becher. 2011. RORgt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12: 560-567.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 560-567
-
-
Codarri, L.1
Gyulvészi, G.2
Tosevski, V.3
Hesske, L.4
Fontana, A.5
Magnenat, L.6
Suter, T.7
Becher, B.8
|