메뉴 건너뛰기




Volumn 19-23-Oct-2015, Issue , 2015, Pages 1171-1180

Time series analysis of nursing notes for mortality prediction via a state transition topic model

Author keywords

Healthcare; Hidden Markov model; Latent dirichlet allocation; Medical data mining; Mortality prediction; Nursing notes; State transition topic model

Indexed keywords

DATA MINING; FORECASTING; HEALTH CARE; HIDDEN MARKOV MODELS; INTENSIVE CARE UNITS; KNOWLEDGE MANAGEMENT; MARKOV PROCESSES; MEDICAL COMPUTING; NURSING; STATISTICS;

EID: 84958246551     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2806416.2806541     Document Type: Conference Paper
Times cited : (22)

References (26)
  • 2
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. M. Blei and J. D. Lafferty. Dynamic topic models. In ICML '06, pages 113-120, 2006.
    • (2006) ICML '06 , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 3
    • 0034794874 scopus 로고    scopus 로고
    • Topic segmentation with an aspect hidden Markov model
    • D. M. Blei and P. J. Moreno. Topic segmentation with an aspect hidden Markov model. In ACM SIGIR '01, pages 343-348, 2001.
    • (2001) ACM SIGIR '01 , pp. 343-348
    • Blei, D.M.1    Moreno, P.J.2
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 5
    • 84907031479 scopus 로고    scopus 로고
    • Scalable noise mining in long-term electrocardiographic time-series to predict death following heart attacks
    • C.-c. Chia, Z. Syed, and A. Arbor. Scalable Noise Mining in Long-Term Electrocardiographic Time-Series to Predict Death Following Heart Attacks. KDD '14, pages 125-134, 2014.
    • (2014) KDD '14 , pp. 125-134
    • Chia, C.-C.1    Syed, Z.2    Arbor, A.3
  • 6
    • 84865082126 scopus 로고    scopus 로고
    • Monitor alarm fatigue: An integrative review
    • M. Cvach. Monitor alarm fatigue: an integrative review. Biomedical instrumentation & technology, 46(4):268-77, 2012.
    • (2012) Biomedical Instrumentation & Technology , vol.46 , Issue.4 , pp. 268-277
    • Cvach, M.1
  • 7
    • 84863180885 scopus 로고    scopus 로고
    • Tracking and connecting topics via incremental hierarchical dirichlet processes
    • Z. J. Gao, Y. Song, S. Liu, H. Wang, H. Wei, Y. Chen, and W. Cui. Tracking and Connecting Topics via Incremental Hierarchical Dirichlet Processes. In IEEE ICDM '11, pages 1056-1061, 2011.
    • (2011) IEEE ICDM '11 , pp. 1056-1061
    • Gao, Z.J.1    Song, Y.2    Liu, S.3    Wang, H.4    Wei, H.5    Chen, Y.6    Cui, W.7
  • 10
    • 80052661552 scopus 로고    scopus 로고
    • A time-dependent topic model for multiple text streams
    • L. Hong, B. Dom, S. Gurumurthy, and K. Tsioutsiouliklis. A time-dependent topic model for multiple text streams. In KDD '11, page 832, 2011.
    • (2011) KDD '11 , pp. 832
    • Hong, L.1    Dom, B.2    Gurumurthy, S.3    Tsioutsiouliklis, K.4
  • 11
    • 80052655724 scopus 로고    scopus 로고
    • Tracking trends: Incorporating term volume into temporal topic models
    • L. Hong, D. Yin, J. Guo, and B. D. Davison. Tracking trends: incorporating term volume into temporal topic models. In KDD '11, page 484, 2011.
    • (2011) KDD '11 , pp. 484
    • Hong, L.1    Yin, D.2    Guo, J.3    Davison, B.D.4
  • 14
    • 84880830110 scopus 로고    scopus 로고
    • Risk stratification of ICU patients using topic models inferred from unstructured progress notes
    • L.-w. Lehman, M. Saeed, W. Long, J. Lee, and R. Mark. Risk stratification of ICU patients using topic models inferred from unstructured progress notes. AMIA Annual Symposium proceedings, 2012:505-11, 2012.
    • (2012) AMIA Annual Symposium Proceedings , vol.2012 , pp. 505-511
    • Lehman, L.-W.1    Saeed, M.2    Long, W.3    Lee, J.4    Mark, R.5
  • 15
    • 29244457315 scopus 로고    scopus 로고
    • Discovering evolutionary theme patterns from text
    • Q. Mei and C. Zhai. Discovering evolutionary theme patterns from text. In KDD '05, page 198, 2005.
    • (2005) KDD '05 , pp. 198
    • Mei, Q.1    Zhai, C.2
  • 17
    • 84883354093 scopus 로고    scopus 로고
    • Mixed membership Markov models for unsupervised conversation modeling
    • M. J. Paul. Mixed Membership Markov Models for Unsupervised Conversation Modeling. In EMNLP-CoNLL '12, pages 94-104, 2012.
    • (2012) EMNLP-CoNLL '12 , pp. 94-104
    • Paul, M.J.1
  • 20
    • 84859034862 scopus 로고    scopus 로고
    • Structural topic model for latent topical structure analysis
    • H. Wang, D. Zhang, and C. Zhai. Structural Topic Model for Latent Topical Structure Analysis. ACL '11, pages 1526-1535, 2011.
    • (2011) ACL '11 , pp. 1526-1535
    • Wang, H.1    Zhang, D.2    Zhai, C.3
  • 21
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-Markov continuous-time model of topical trends
    • X. Wang and A. McCallum. Topics over time: a non-Markov continuous-time model of topical trends. In KDD '06, page 424, 2006.
    • (2006) KDD '06 , pp. 424
    • Wang, X.1    McCallum, A.2
  • 22
    • 84866021115 scopus 로고    scopus 로고
    • Tm-lda: Efficient online modeling of latent topic transitions in social media
    • Y. Wang, E. Agichtein, and M. Benzi. Tm-lda: Efficient online modeling of latent topic transitions in social media. In KDD '12, pages 123-131, 2012.
    • (2012) KDD '12 , pp. 123-131
    • Wang, Y.1    Agichtein, E.2    Benzi, M.3
  • 23
    • 84877753184 scopus 로고    scopus 로고
    • Patient risk stratification for hospital-associated C. Diff as a time-series classification task
    • J. Wiens, E. Horvitz, and J. V. Guttag. Patient Risk Stratification for Hospital-Associated C. diff as a Time-Series Classification Task. In Advances in Neural Information Processing Systems, pages 467-475, 2012.
    • (2012) Advances in Neural Information Processing Systems , pp. 467-475
    • Wiens, J.1    Horvitz, E.2    Guttag, J.V.3
  • 24
    • 84907032880 scopus 로고    scopus 로고
    • Finding progression stages in time-evolving event sequences
    • J. Yang, J. McAuley, J. Leskovec, P. LePendu, and N. Shah. Finding progression stages in time-evolving event sequences. In WWW '14, pages 783-794, 2014.
    • (2014) WWW '14 , pp. 783-794
    • Yang, J.1    McAuley, J.2    Leskovec, J.3    LePendu, P.4    Shah, N.5
  • 25
    • 77956211804 scopus 로고    scopus 로고
    • Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora
    • J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora. In KDD '10, page 1079, 2010.
    • (2010) KDD '10 , pp. 1079
    • Zhang, J.1    Song, Y.2    Zhang, C.3    Liu, S.4
  • 26
    • 77956530160 scopus 로고    scopus 로고
    • Conditional topic random fields
    • J. Zhu and E. P. Xing. Conditional topic random fields. ICML '10, pages 1239-1246, 2010.
    • (2010) ICML '10 , pp. 1239-1246
    • Zhu, J.1    Xing, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.