메뉴 건너뛰기




Volumn , Issue , 2011, Pages 832-840

A time-dependent topic model for multiple text streams

Author keywords

News; Temporal dynamics; Text streams; Topic models; Twitter

Indexed keywords

DYNAMICS; SOCIAL NETWORKING (ONLINE);

EID: 80052661552     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020551     Document Type: Conference Paper
Times cited : (73)

References (33)
  • 6
    • 84864054097 scopus 로고    scopus 로고
    • Modeling general and specific aspects of documents with a probabilistic topic model
    • C. Chemudugunta, P. Smyth, and M. Steyvers. Modeling general and specific aspects of documents with a probabilistic topic model. In NIPS, pages 241-248, 2006.
    • (2006) NIPS , pp. 241-248
    • Chemudugunta, C.1    Smyth, P.2    Steyvers, M.3
  • 11
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42:177-196, 2001. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 17
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(3):503-528, 1989. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu Dong, C.1    Nocedal Jorge2
  • 26
    • 33749565782 scopus 로고    scopus 로고
    • Topics over Time: A non-markov continuous-time model of topical trends
    • KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • X. Wang and A. McCallum. Topics over time: A non-Markov continuous-time model of topical trends. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 424-433, 2006. (Pubitemid 44535539)
    • (2006) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , vol.2006 , pp. 424-433
    • Wang, X.1    McCallum, A.2
  • 27
    • 36849036336 scopus 로고    scopus 로고
    • Mining correlated bursty topic patterns from coordinated text streams
    • DOI 10.1145/1281192.1281276, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic patterns from coordinated text streams. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 784-793, 2007. (Pubitemid 350229264)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 784-793
    • Wang, X.1    Zhai, C.2    Hu, X.3    Sproat, R.4
  • 33
    • 84995774405 scopus 로고    scopus 로고
    • Comparing Twitter and traditional media using topic models
    • W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing Twitter and traditional media using topic models. In ECIR, pages 338-349, 2011.
    • (2011) ECIR , pp. 338-349
    • Zhao, W.X.1    Jiang, J.2    Weng, J.3    He, J.4    Lim, E.-P.5    Yan, H.6    Li, X.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.