-
1
-
-
84916624817
-
Research development on sodium-ion batteries
-
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries Chem. Rev. 2014, 114, 11636-11682 10.1021/cr500192f
-
(2014)
Chem. Rev.
, vol.114
, pp. 11636-11682
-
-
Yabuuchi, N.1
Kubota, K.2
Dahbi, M.3
Komaba, S.4
-
2
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries
-
Kim, S. W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries Adv. Energy Mater. 2012, 2, 710-721 10.1002/aenm.201200026
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
3
-
-
84873405642
-
Sodium-ion batteries
-
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries Adv. Funct. Mater. 2013, 23, 947-958 10.1002/adfm.201200691
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
5
-
-
84857615154
-
Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
-
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems Energy Environ. Sci. 2012, 5, 5884-5901 10.1039/c2ee02781j
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5884-5901
-
-
Palomares, V.1
Serras, P.2
Villaluenga, I.3
Hueso, K.B.4
Carretero-Gonzalez, J.5
Rojo, T.6
-
6
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
Pan, H.; Hu, Y. S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Energy Environ. Sci. 2013, 6, 2338-2360 10.1039/c3ee40847g
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.S.2
Chen, L.3
-
7
-
-
84908143622
-
Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena
-
Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena Angew. Chem., Int. Ed. 2014, 53, 10169-10173 10.1002/anie.201403734
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 10169-10173
-
-
Jache, B.1
Adelhelm, P.2
-
8
-
-
84903768223
-
Negative electrodes for Na-ion batteries
-
Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries Phys. Chem. Chem. Phys. 2014, 16, 15007-15028 10.1039/c4cp00826j
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 15007-15028
-
-
Dahbi, M.1
Yabuuchi, N.2
Kubota, K.3
Tokiwa, K.4
Komaba, S.5
-
9
-
-
84910649638
-
High-capacity anode materials for sodium-ion batteries
-
Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries Chem.-Eur. J. 2014, 20, 11980-11992 10.1002/chem.201402511
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 11980-11992
-
-
Kim, Y.1
Ha, K.H.2
Oh, S.M.3
Lee, K.T.4
-
10
-
-
85027931678
-
Recent development on anodes for Na-ion batteries
-
Bommier, C.; Ji, X. L. Recent development on anodes for Na-ion batteries Isr. J. Chem. 2015, 55, 486-507 10.1002/ijch.201400118
-
(2015)
Isr. J. Chem.
, vol.55
, pp. 486-507
-
-
Bommier, C.1
Ji, X.L.2
-
11
-
-
11644298091
-
Mechanisms for lithium insertion in carbonaceous materials
-
Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials Science 1995, 270, 590-593 10.1126/science.270.5236.590
-
(1995)
Science
, vol.270
, pp. 590-593
-
-
Dahn, J.R.1
Zheng, T.2
Liu, Y.3
Xue, J.S.4
-
12
-
-
0019056958
-
New results about the sodium-graphite system
-
Metrot, A.; Guerard, D.; Billaud, D.; Herold, A. New results about the sodium-graphite system Synth. Met. 1980, 1, 363-369 10.1016/0379-6779(80)90071-5
-
(1980)
Synth. Met.
, vol.1
, pp. 363-369
-
-
Metrot, A.1
Guerard, D.2
Billaud, D.3
Herold, A.4
-
13
-
-
0024068597
-
Electrochemical intercalation of sodium in graphite
-
Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite Solid State Ionics 1988, 28-30 (Part 2) 1172-1175 10.1016/0167-2738(88)90351-7
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
14
-
-
84890836480
-
Van der Waals density functional study of the energetics of alkali metal intercalation in graphite
-
Wang, Z.; Selbach, S. M.; Grande, T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite RSC Adv. 2014, 4, 4069-4079 10.1039/C3RA47187J
-
(2014)
RSC Adv.
, vol.4
, pp. 4069-4079
-
-
Wang, Z.1
Selbach, S.M.2
Grande, T.3
-
15
-
-
84892617715
-
Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds
-
Okamoto, Y. Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds J. Phys. Chem. C 2014, 118, 16-19 10.1021/jp4063753
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 16-19
-
-
Okamoto, Y.1
-
16
-
-
84879932419
-
First-principles study of alkali metal-graphite intercalation compounds
-
Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds J. Power Sources 2013, 243, 585-587 10.1016/j.jpowsour.2013.06.057
-
(2013)
J. Power Sources
, vol.243
, pp. 585-587
-
-
Nobuhara, K.1
Nakayama, H.2
Nose, M.3
Nakanishi, S.4
Iba, H.5
-
17
-
-
84961366039
-
Sodium storage behavior in natural graphite using ether-based electrolyte systems
-
Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems Adv. Funct. Mater. 2015, 25, 534-541 10.1002/adfm.201402984
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 534-541
-
-
Kim, H.1
Hong, J.2
Park, Y.U.3
Kim, J.4
Hwang, I.5
Kang, K.6
-
18
-
-
84875272911
-
Reduced graphene oxide with superior cycling stability and rate capability for sodium storage
-
Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage Carbon 2013, 57, 202-208 10.1016/j.carbon.2013.01.064
-
(2013)
Carbon
, vol.57
, pp. 202-208
-
-
Wang, Y.X.1
Chou, S.L.2
Liu, H.K.3
Dou, S.X.4
-
19
-
-
84902001334
-
Expanded graphite as superior anode for sodium-ion batteries
-
Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded graphite as superior anode for sodium-ion batteries Nat. Commun. 2014, 5, 4033 10.1038/ncomms5033
-
(2014)
Nat. Commun.
, vol.5
, pp. 4033
-
-
Wen, Y.1
He, K.2
Zhu, Y.3
Han, F.4
Xu, Y.5
Matsuda, I.6
Ishii, Y.7
Cumings, J.8
Wang, C.9
-
20
-
-
84949116922
-
Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability
-
David, L.; Singh, G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability J. Phys. Chem. C 2014, 118, 28401-28408 10.1021/jp5080847
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 28401-28408
-
-
David, L.1
Singh, G.2
-
21
-
-
84891368521
-
Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes
-
Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes ACS Nano 2013, 7, 11004-11015 10.1021/nn404640c
-
(2013)
ACS Nano
, vol.7
, pp. 11004-11015
-
-
Ding, J.1
Wang, H.2
Li, Z.3
Kohandehghan, A.4
Cui, K.5
Xu, Z.6
Zahiri, B.7
Tan, X.8
Lotfabad, E.M.9
Olsen, B.C.10
Mitlin, D.11
-
22
-
-
84991221366
-
Electrochemically expandable soft carbon as anodes for Na-ion batteries
-
Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M. M.; Ji, X. Electrochemically expandable soft carbon as anodes for Na-ion batteries ACS Cent. Sci. 2015, 1, 516 10.1021/acscentsci.5b00329
-
(2015)
ACS Cent. Sci.
, vol.1
, pp. 516
-
-
Luo, W.1
Jian, Z.2
Xing, Z.3
Wang, W.4
Bommier, C.5
Lerner, M.M.6
Ji, X.7
-
23
-
-
84889664636
-
2 nanofilms and its application in improving hydrogen evolution reaction
-
2 nanofilms and its application in improving hydrogen evolution reaction Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 19701-19706 10.1073/pnas.1316792110
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 19701-19706
-
-
Wang, H.1
Lu, Z.2
Xu, S.3
Kong, D.4
Cha, J.J.5
Zheng, G.6
Hsu, P.C.7
Yan, K.8
Bradshaw, D.9
Prinz, F.B.10
Cui, Y.11
-
24
-
-
84944339827
-
2: in situ observation of its dynamics and tuning optical and electrical properties
-
2: in situ observation of its dynamics and tuning optical and electrical properties Nano Lett. 2015, 15, 6777-6784 10.1021/acs.nanolett.5b02619
-
(2015)
Nano Lett.
, vol.15
, pp. 6777-6784
-
-
Xiong, F.1
Wang, H.2
Liu, X.3
Sun, J.4
Brongersma, M.5
Pop, E.6
Cui, Y.7
-
25
-
-
84935843801
-
Sodium-ion intercalated transparent conductors with printed reduced graphene oxide networks
-
Wan, J.; Gu, F.; Bao, W.; Dai, J.; Shen, F.; Luo, W.; Han, X.; Urban, D.; Hu, L. Sodium-ion intercalated transparent conductors with printed reduced graphene oxide networks Nano Lett. 2015, 15, 3763-3769 10.1021/acs.nanolett.5b00300
-
(2015)
Nano Lett.
, vol.15
, pp. 3763-3769
-
-
Wan, J.1
Gu, F.2
Bao, W.3
Dai, J.4
Shen, F.5
Luo, W.6
Han, X.7
Urban, D.8
Hu, L.9
-
26
-
-
0009800208
-
The mechanisms of lithium and sodium insertion in carbon materials
-
Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials J. Electrochem. Soc. 2001, 148, A803-A811 10.1149/1.1379565
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. A803-A811
-
-
Stevens, D.A.1
Dahn, J.R.2
-
27
-
-
0033751756
-
High capacity anode materials for rechargeable sodium-ion batteries
-
Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries J. Electrochem. Soc. 2000, 147, 1271-1273 10.1149/1.1393348
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
28
-
-
0037025882
-
Electrochemical insertion of sodium into hard carbons
-
Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons Electrochim. Acta 2002, 47, 3303-3307 10.1016/S0013-4686(02)00250-5
-
(2002)
Electrochim. Acta
, vol.47
, pp. 3303-3307
-
-
Thomas, P.1
Billaud, D.2
-
29
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
-
Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries Adv. Funct. Mater. 2011, 21, 3859-3867 10.1002/adfm.201100854
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3859-3867
-
-
Komaba, S.1
Murata, W.2
Ishikawa, T.3
Yabuuchi, N.4
Ozeki, T.5
Nakayama, T.6
Ogata, A.7
Gotoh, K.8
Fujiwara, K.9
-
30
-
-
84863832016
-
Sodium ion insertion in hollow carbon nanowires for battery applications
-
Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications Nano Lett. 2012, 12, 3783-3787 10.1021/nl3016957
-
(2012)
Nano Lett.
, vol.12
, pp. 3783-3787
-
-
Cao, Y.1
Xiao, L.2
Sushko, M.L.3
Wang, W.4
Schwenzer, B.5
Xiao, J.6
Nie, Z.7
Saraf, L.V.8
Yang, Z.9
Liu, J.10
-
31
-
-
84882707016
-
Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries
-
Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries J. Mater. Chem. A 2013, 1, 10662-10666 10.1039/c3ta12389h
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 10662-10666
-
-
Luo, W.1
Schardt, J.2
Bommier, C.3
Wang, B.4
Razink, J.5
Simonsen, J.6
Ji, X.7
-
32
-
-
84890813938
-
Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers
-
Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers Nanoscale 2014, 6, 693-698 10.1039/C3NR05022J
-
(2014)
Nanoscale
, vol.6
, pp. 693-698
-
-
Li, W.1
Zeng, L.2
Yang, Z.3
Gu, L.4
Wang, J.5
Liu, X.6
Cheng, J.7
Yu, Y.8
-
33
-
-
84892635268
-
Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance
-
Fu, L.; Tang, K.; Song, K.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance Nanoscale 2014, 6, 1384-1389 10.1039/C3NR05374A
-
(2014)
Nanoscale
, vol.6
, pp. 1384-1389
-
-
Fu, L.1
Tang, K.2
Song, K.3
Van Aken, P.A.4
Yu, Y.5
Maier, J.6
-
34
-
-
84901745680
-
Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements
-
Bommier, C.; Luo, W.; Gao, W. Y.; Greaney, A.; Ma, S.; Ji, X. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements Carbon 2014, 76, 165-174 10.1016/j.carbon.2014.04.064
-
(2014)
Carbon
, vol.76
, pp. 165-174
-
-
Bommier, C.1
Luo, W.2
Gao, W.Y.3
Greaney, A.4
Ma, S.5
Ji, X.6
-
35
-
-
84867315537
-
Hollow carbon nanospheres with superior rate capability for sodium-based batteries
-
Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries Adv. Energy Mater. 2012, 2, 873-877 10.1002/aenm.201100691
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 873-877
-
-
Tang, K.1
Fu, L.2
White, R.J.3
Yu, L.4
Titirici, M.M.5
Antonietti, M.6
Maier, J.7
-
36
-
-
84872309768
-
Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries
-
Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries ChemSusChem 2013, 6, 56-60 10.1002/cssc.201200680
-
(2013)
ChemSusChem
, vol.6
, pp. 56-60
-
-
Wang, H.G.1
Wu, Z.2
Meng, F.L.3
Ma, D.L.4
Huang, X.L.5
Wang, L.M.6
Zhang, X.B.7
-
37
-
-
84915811922
-
Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
-
Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries J. Mater. Chem. A 2015, 3, 71-77 10.1039/C4TA05451B
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 71-77
-
-
Li, Y.1
Xu, S.2
Wu, X.3
Yu, J.4
Wang, Y.5
Hu, Y.S.6
Li, H.7
Chen, L.8
Huang, X.9
-
38
-
-
84908611617
-
Origin of non-SEI related Coulombic efficiency loss in carbons tested against Na and Li
-
Memarzadeh Lotfabad, E.; Kalisvaart, P.; Kohandehghan, A.; Karpuzov, D.; Mitlin, D. Origin of non-SEI related Coulombic efficiency loss in carbons tested against Na and Li J. Mater. Chem. A 2014, 2, 19685-19695 10.1039/C4TA04995K
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 19685-19695
-
-
Memarzadeh Lotfabad, E.1
Kalisvaart, P.2
Kohandehghan, A.3
Karpuzov, D.4
Mitlin, D.5
-
39
-
-
84922455797
-
Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent
-
Luo, W.; Bommier, C.; Jian, Z.; Li, X.; Carter, R.; Vail, S.; Lu, Y.; Lee, J. J.; Ji, X. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent ACS Appl. Mater. Interfaces 2015, 7, 2626-2631 10.1021/am507679x
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 2626-2631
-
-
Luo, W.1
Bommier, C.2
Jian, Z.3
Li, X.4
Carter, R.5
Vail, S.6
Lu, Y.7
Lee, J.J.8
Ji, X.9
-
40
-
-
84945428793
-
Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries
-
Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries ACS Appl. Mater. Interfaces 2015, 7, 23291-23296 10.1021/acsami.5b07583
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 23291-23296
-
-
Shen, F.1
Zhu, H.2
Luo, W.3
Wan, J.4
Zhou, L.5
Dai, J.6
Zhao, B.7
Han, X.8
Fu, K.9
Hu, L.10
-
41
-
-
84924425570
-
Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors
-
Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors Energy Environ. Sci. 2015, 8, 941-955 10.1039/C4EE02986K
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 941-955
-
-
Ding, J.1
Wang, H.2
Li, Z.3
Cui, K.4
Karpuzov, D.5
Tan, X.6
Kohandehghan, A.7
Mitlin, D.8
-
42
-
-
84941092792
-
New mechanistic insights on Na-ion storage in nongraphitizable carbon
-
Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. New mechanistic insights on Na-ion storage in nongraphitizable carbon Nano Lett. 2015, 15, 5888-5892 10.1021/acs.nanolett.5b01969
-
(2015)
Nano Lett.
, vol.15
, pp. 5888-5892
-
-
Bommier, C.1
Surta, T.W.2
Dolgos, M.3
Ji, X.4
-
43
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes J. Electrochem. Soc. 2011, 158, A1011-A1014 10.1149/1.3607983
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
44
-
-
84935018209
-
Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance
-
Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance Acc. Chem. Res. 2015, 48, 1657-1665 10.1021/acs.accounts.5b00114
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 1657-1665
-
-
Li, Z.1
Ding, J.2
Mitlin, D.3
-
45
-
-
84869152614
-
Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction
-
Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction Nano Lett. 2012, 12, 5897-5902 10.1021/nl303305c
-
(2012)
Nano Lett.
, vol.12
, pp. 5897-5902
-
-
Wang, J.W.1
Liu, X.H.2
Mao, S.X.3
Huang, J.Y.4
-
46
-
-
84876516715
-
Tin-coated viral nanoforests as sodium-ion battery anodes
-
Liu, Y.; Xu, Y.; Zhu, Y.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. Tin-coated viral nanoforests as sodium-ion battery anodes ACS Nano 2013, 7, 3627-3634 10.1021/nn400601y
-
(2013)
ACS Nano
, vol.7
, pp. 3627-3634
-
-
Liu, Y.1
Xu, Y.2
Zhu, Y.3
Culver, J.N.4
Lundgren, C.A.5
Xu, K.6
Wang, C.7
-
47
-
-
84862685746
-
Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
-
Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell Electrochem. Commun. 2012, 21, 65-68 10.1016/j.elecom.2012.05.017
-
(2012)
Electrochem. Commun.
, vol.21
, pp. 65-68
-
-
Komaba, S.1
Matsuura, Y.2
Ishikawa, T.3
Yabuuchi, N.4
Murata, W.5
Kuze, S.6
-
48
-
-
84899863453
-
Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries
-
Dai, K.; Zhao, H.; Wang, Z.; Song, X.; Battaglia, V.; Liu, G. Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries J. Power Sources 2014, 263, 276-279 10.1016/j.jpowsour.2014.04.012
-
(2014)
J. Power Sources
, vol.263
, pp. 276-279
-
-
Dai, K.1
Zhao, H.2
Wang, Z.3
Song, X.4
Battaglia, V.5
Liu, G.6
-
49
-
-
84901684098
-
Anodes for sodium ion batteries based on tin-germanium-antimony alloys
-
Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. Anodes for sodium ion batteries based on tin-germanium-antimony alloys ACS Nano 2014, 8, 4415-4429 10.1021/nn4063598
-
(2014)
ACS Nano
, vol.8
, pp. 4415-4429
-
-
Farbod, B.1
Cui, K.2
Kalisvaart, W.P.3
Kupsta, M.4
Zahiri, B.5
Kohandehghan, A.6
Lotfabad, E.M.7
Li, Z.8
Luber, E.J.9
Mitlin, D.10
-
50
-
-
84880166567
-
Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir
-
Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir Nano Lett. 2013, 13, 3093-3100 10.1021/nl400998t
-
(2013)
Nano Lett.
, vol.13
, pp. 3093-3100
-
-
Zhu, H.1
Jia, Z.2
Chen, Y.3
Weadock, N.4
Wan, J.5
Vaaland, O.6
Han, X.7
Li, T.8
Hu, L.9
-
51
-
-
84892151010
-
Atomic-layer-deposition oxide nanoglue for sodium ion batteries
-
Han, X.; Liu, Y.; Jia, Z.; Chen, Y. C.; Wan, J.; Weadock, N.; Gaskell, K. J.; Li, T.; Hu, L. Atomic-layer-deposition oxide nanoglue for sodium ion batteries Nano Lett. 2014, 14, 139-147 10.1021/nl4035626
-
(2014)
Nano Lett.
, vol.14
, pp. 139-147
-
-
Han, X.1
Liu, Y.2
Jia, Z.3
Chen, Y.C.4
Wan, J.5
Weadock, N.6
Gaskell, K.J.7
Li, T.8
Hu, L.9
-
52
-
-
84862527593
-
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
-
Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries Chem. Commun. 2012, 48, 7070-7072 10.1039/c2cc32730a
-
(2012)
Chem. Commun.
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
Wu, L.3
Cao, Y.4
Ai, X.5
Yang, H.6
-
53
-
-
84890462537
-
Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries
-
Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries Energy Environ. Sci. 2014, 7, 323-328 10.1039/C3EE42944J
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 323-328
-
-
Wu, L.1
Hu, X.2
Qian, J.3
Pei, F.4
Wu, F.5
Mao, R.6
Ai, X.7
Yang, H.8
Cao, Y.9
-
54
-
-
84896385034
-
Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk
-
He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk Nano Lett. 2014, 14, 1255-1262 10.1021/nl404165c
-
(2014)
Nano Lett.
, vol.14
, pp. 1255-1262
-
-
He, M.1
Kravchyk, K.2
Walter, M.3
Kovalenko, M.V.4
-
55
-
-
84923881072
-
Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries
-
Wu, L.; Lu, H.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries J. Mater. Chem. A 2015, 3, 5708-5713 10.1039/C4TA06086E
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 5708-5713
-
-
Wu, L.1
Lu, H.2
Xiao, L.3
Ai, X.4
Yang, H.5
Cao, Y.6
-
56
-
-
84880816754
-
Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode
-
Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode ACS Nano 2013, 7, 6378-6386 10.1021/nn4025674
-
(2013)
ACS Nano
, vol.7
, pp. 6378-6386
-
-
Zhu, Y.1
Han, X.2
Xu, Y.3
Liu, Y.4
Zheng, S.5
Xu, K.6
Hu, L.7
Wang, C.8
-
57
-
-
84871591420
-
Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism
-
Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism J. Am. Chem. Soc. 2012, 134, 20805-20811 10.1021/ja310347x
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20805-20811
-
-
Darwiche, A.1
Marino, C.2
Sougrati, M.T.3
Fraisse, B.4
Stievano, L.5
Monconduit, L.6
-
58
-
-
84886404466
-
Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage
-
Zhou, X.; Dai, Z.; Bao, J.; Guo, Y. G. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage J. Mater. Chem. A 2013, 1, 13727-13731 10.1039/c3ta13438e
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 13727-13731
-
-
Zhou, X.1
Dai, Z.2
Bao, J.3
Guo, Y.G.4
-
59
-
-
84907494602
-
The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries
-
Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries J. Power Sources 2015, 273, 14-24 10.1016/j.jpowsour.2014.09.037
-
(2015)
J. Power Sources
, vol.273
, pp. 14-24
-
-
Bodenes, L.1
Darwiche, A.2
Monconduit, L.3
Martinez, H.4
-
60
-
-
84899582807
-
Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures
-
Luo, W.; Lorger, S.; Wang, B.; Bommier, C.; Ji, X. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures Chem. Commun. 2014, 50, 5435-5437 10.1039/c4cc01326c
-
(2014)
Chem. Commun.
, vol.50
, pp. 5435-5437
-
-
Luo, W.1
Lorger, S.2
Wang, B.3
Bommier, C.4
Ji, X.5
-
61
-
-
84944348379
-
Coupling in situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony
-
Li, Z.; Tan, X.; Li, P.; Kalisvaart, P.; Janish, M. T.; Mook, W. M.; Luber, E. J.; Jungjohann, K. L.; Carter, C. B.; Mitlin, D. Coupling In situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony Nano Lett. 2015, 15, 6339-6348 10.1021/acs.nanolett.5b03373
-
(2015)
Nano Lett.
, vol.15
, pp. 6339-6348
-
-
Li, Z.1
Tan, X.2
Li, P.3
Kalisvaart, P.4
Janish, M.T.5
Mook, W.M.6
Luber, E.J.7
Jungjohann, K.L.8
Carter, C.B.9
Mitlin, D.10
-
62
-
-
84878877019
-
An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries
-
Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries Adv. Mater. 2013, 25, 3045-3049 10.1002/adma.201204877
-
(2013)
Adv. Mater.
, vol.25
, pp. 3045-3049
-
-
Kim, Y.1
Park, Y.2
Choi, A.3
Choi, N.S.4
Kim, J.5
Lee, J.6
Ryu, J.H.7
Oh, S.M.8
Lee, K.T.9
-
63
-
-
84876484953
-
High capacity and rate capability of amorphous phosphorus for sodium ion batteries
-
Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries Angew. Chem., Int. Ed. 2013, 52, 4633-4636 10.1002/anie.201209689
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 4633-4636
-
-
Qian, J.1
Wu, X.2
Cao, Y.3
Ai, X.4
Yang, H.5
-
64
-
-
84887841052
-
Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage
-
Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage Nano Lett. 2013, 13, 5480-5484 10.1021/nl403053v
-
(2013)
Nano Lett.
, vol.13
, pp. 5480-5484
-
-
Li, W.J.1
Chou, S.L.2
Wang, J.Z.3
Liu, H.K.4
Dou, S.X.5
-
65
-
-
84910132404
-
Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries
-
Song, J.; Yu, Z.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D.; Walter, T.; Regula, M.; Choi, D.; Li, X.; Manivannan, A.; Wang, D. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries Nano Lett. 2014, 14, 6329-6335 10.1021/nl502759z
-
(2014)
Nano Lett.
, vol.14
, pp. 6329-6335
-
-
Song, J.1
Yu, Z.2
Gordin, M.L.3
Hu, S.4
Yi, R.5
Tang, D.6
Walter, T.7
Regula, M.8
Choi, D.9
Li, X.10
Manivannan, A.11
Wang, D.12
-
66
-
-
84947024542
-
A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
-
Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries Nat. Nanotechnol. 2015, 10, 980-985 10.1038/nnano.2015.194
-
(2015)
Nat. Nanotechnol.
, vol.10
, pp. 980-985
-
-
Sun, J.1
Lee, H.W.2
Pasta, M.3
Yuan, H.4
Zheng, G.5
Sun, Y.6
Li, Y.7
Cui, Y.8
-
67
-
-
84883261226
-
Germanium as negative electrode material for sodium-ion batteries
-
Baggetto, L.; Keum, J. K.; Browning, J. F.; Veith, G. M. Germanium as negative electrode material for sodium-ion batteries Electrochem. Commun. 2013, 34, 41-44 10.1016/j.elecom.2013.05.025
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 41-44
-
-
Baggetto, L.1
Keum, J.K.2
Browning, J.F.3
Veith, G.M.4
-
68
-
-
84907875612
-
Activation with Li enables facile sodium storage in germanium
-
Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; Kalisvaart, W. P.; Mitlin, D. Activation with Li enables facile sodium storage in germanium Nano Lett. 2014, 14, 5873-5882 10.1021/nl502812x
-
(2014)
Nano Lett.
, vol.14
, pp. 5873-5882
-
-
Kohandehghan, A.1
Cui, K.2
Kupsta, M.3
Ding, J.4
Memarzadeh Lotfabad, E.5
Kalisvaart, W.P.6
Mitlin, D.7
-
69
-
-
84920730585
-
Bismuth: A new anode for the Na-ion battery
-
Su, D.; Dou, S.; Wang, G. Bismuth: A new anode for the Na-ion battery Nano Energy 2015, 12, 88-95 10.1016/j.nanoen.2014.12.012
-
(2015)
Nano Energy
, vol.12
, pp. 88-95
-
-
Su, D.1
Dou, S.2
Wang, G.3
-
70
-
-
84902083344
-
High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries
-
Kim, I. T.; Allcorn, E.; Manthiram, A. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries Phys. Chem. Chem. Phys. 2014, 16, 12884-12889 10.1039/c4cp01240b
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 12884-12889
-
-
Kim, I.T.1
Allcorn, E.2
Manthiram, A.3
-
71
-
-
84903209067
-
3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability
-
3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability Adv. Mater. 2014, 26, 4037-4042 10.1002/adma.201400794
-
(2014)
Adv. Mater.
, vol.26
, pp. 4037-4042
-
-
Li, W.1
Chou, S.L.2
Wang, J.Z.3
Kim, J.H.4
Liu, H.K.5
Dou, S.X.6
-
72
-
-
84903145177
-
Tin phosphide as a promising anode material for Na-ion batteries
-
Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries Adv. Mater. 2014, 26, 4139-4144 10.1002/adma.201305638
-
(2014)
Adv. Mater.
, vol.26
, pp. 4139-4144
-
-
Kim, Y.1
Kim, Y.2
Choi, A.3
Woo, S.4
Mok, D.5
Choi, N.S.6
Jung, Y.S.7
Ryu, J.H.8
Oh, S.M.9
Lee, K.T.10
-
73
-
-
84898012408
-
3 as a high-capacity, cycle-stable anode of Na-ion batteries
-
3 as a high-capacity, cycle-stable anode of Na-ion batteries Nano Lett. 2014, 14, 1865-1869 10.1021/nl404637q
-
(2014)
Nano Lett.
, vol.14
, pp. 1865-1869
-
-
Qian, J.1
Xiong, Y.2
Cao, Y.3
Ai, X.4
Yang, H.5
-
75
-
-
84928803185
-
+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
-
+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling Nat. Commun. 2015, 6, 6929-6937 10.1038/ncomms7929
-
(2015)
Nat. Commun.
, vol.6
, pp. 6929-6937
-
-
Chen, C.1
Wen, Y.2
Hu, X.3
Ji, X.4
Yan, M.5
Mai, L.6
Hu, P.7
Shan, B.8
Huang, Y.9
-
76
-
-
84902376682
-
2-reduced graphene oxide composite - a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
-
2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material Adv. Mater. 2014, 26, 3854-3859 10.1002/adma.201306314
-
(2014)
Adv. Mater.
, vol.26
, pp. 3854-3859
-
-
Qu, B.1
Ma, C.2
Ji, G.3
Xu, C.4
Xu, J.5
Meng, Y.S.6
Wang, T.7
Lee, J.Y.8
-
77
-
-
84930936624
-
Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries
-
Wu, L.; Lu, H.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries J. Power Sources 2015, 293, 784-789 10.1016/j.jpowsour.2015.06.015
-
(2015)
J. Power Sources
, vol.293
, pp. 784-789
-
-
Wu, L.1
Lu, H.2
Xiao, L.3
Ai, X.4
Yang, H.5
Cao, Y.6
-
78
-
-
84907729418
-
A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries
-
Wu, L.; Lu, H.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries J. Mater. Chem. A 2014, 2, 16424-16428 10.1039/C4TA03365E
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 16424-16428
-
-
Wu, L.1
Lu, H.2
Xiao, L.3
Qian, J.4
Ai, X.5
Yang, H.6
Cao, Y.7
-
79
-
-
84873453834
-
2 for sodium ion battery: Electrochemical measurements and characterization
-
2 for sodium ion battery: Electrochemical measurements and characterization Electrochim. Acta 2013, 92, 427-432 10.1016/j.electacta.2013.01.057
-
(2013)
Electrochim. Acta
, vol.92
, pp. 427-432
-
-
Park, J.1
Kim, J.S.2
Park, J.W.3
Nam, T.H.4
Kim, K.W.5
Ahn, J.H.6
Wang, G.7
Ahn, H.J.8
-
80
-
-
84941137405
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries Angew. Chem. 2014, 126, 13008-13012 10.1002/ange.201407898
-
(2014)
Angew. Chem.
, vol.126
, pp. 13008-13012
-
-
Hu, Z.1
Wang, L.2
Zhang, K.3
Wang, J.4
Cheng, F.5
Tao, Z.6
Chen, J.7
-
81
-
-
84922817182
-
Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes
-
Lacey, S. D.; Wan, J.; Cresce, A. v. W.; Russell, S. M.; Dai, J.; Bao, W.; Xu, K.; Hu, L. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes Nano Lett. 2015, 15, 1018-1024 10.1021/nl503871s
-
(2015)
Nano Lett.
, vol.15
, pp. 1018-1024
-
-
Lacey, S.D.1
Wan, J.2
Cresce, A.V.W.3
Russell, S.M.4
Dai, J.5
Bao, W.6
Xu, K.7
Hu, L.8
-
82
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage Angew. Chem., Int. Ed. 2014, 53, 2152-2156 10.1002/anie.201308354
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
83
-
-
84926293084
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries Sci. Rep. 2015, 5, 9254 10.1038/srep09254
-
(2015)
Sci. Rep.
, vol.5
, pp. 9254
-
-
Xiong, X.1
Luo, W.2
Hu, X.3
Chen, C.4
Qie, L.5
Hou, D.6
Huang, Y.7
-
84
-
-
84867316021
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery
-
4) as high performance anode material for low-cost room-temperature sodium-ion battery Adv. Energy Mater. 2012, 2, 962-965 10.1002/aenm.201200166
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 962-965
-
-
Zhao, L.1
Zhao, J.2
Hu, Y.-S.3
Li, H.4
Zhou, Z.5
Armand, M.6
Chen, L.7
-
85
-
-
84863691641
-
Sodium terephthalate as an organic anode material for sodium ion batteries
-
Park, Y.; Shin, D.-S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y. Sodium terephthalate as an organic anode material for sodium ion batteries Adv. Mater. 2012, 24, 3562-3567 10.1002/adma.201201205
-
(2012)
Adv. Mater.
, vol.24
, pp. 3562-3567
-
-
Park, Y.1
Shin, D.-S.2
Woo, S.H.3
Choi, N.S.4
Shin, K.H.5
Oh, S.M.6
Lee, K.T.7
Hong, S.Y.8
-
86
-
-
84901757051
-
6
-
6 Angew. Chem. 2014, 126, 6002-6006 10.1002/ange.201400032
-
(2014)
Angew. Chem.
, vol.126
, pp. 6002-6006
-
-
Wang, S.1
Wang, L.2
Zhu, Z.3
Hu, Z.4
Zhao, Q.5
Chen, J.6
-
87
-
-
84925849560
-
An organic pigment as a high-performance cathode for sodium-ion batteries
-
Luo, W.; Allen, M.; Raju, V.; Ji, X. An organic pigment as a high-performance cathode for sodium-ion batteries Adv. Energy Mater. 2014, 4, 1400554 10.1002/aenm.201400554
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400554
-
-
Luo, W.1
Allen, M.2
Raju, V.3
Ji, X.4
|