-
1
-
-
84903362570
-
Where Do Batteries End and Supercapacitors Begin?
-
Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210-1211
-
(2014)
Science
, vol.343
, pp. 1210-1211
-
-
Simon, P.1
Gogotsi, Y.2
Dunn, B.3
-
2
-
-
79960127676
-
Molybdenum Oxide Nanowires: Synthesis & Properties
-
Mai, L.; Yang, F.; Zhao, Y.; Xu, X.; Xu, L.; Hu, B.; Luo, Y.; Liu, H. Molybdenum Oxide Nanowires: Synthesis & Properties Mater. Today 2011, 14, 346-353
-
(2011)
Mater. Today
, vol.14
, pp. 346-353
-
-
Mai, L.1
Yang, F.2
Zhao, Y.3
Xu, X.4
Xu, L.5
Hu, B.6
Luo, Y.7
Liu, H.8
-
3
-
-
79851488669
-
4 Cathode Material for Lithium-Ion Batteries
-
4 Cathode Material for Lithium-Ion Batteries Energy Environ. Sci. 2011, 4, 269-284
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 269-284
-
-
Yuan, L.1
Wang, Z.2
Zhang, W.3
Hu, X.4
Chen, J.5
Huang, Y.6
Goodenough, J.B.7
-
4
-
-
70349814431
-
Using the Cumulative Availability Curve to Assess the Threat of Mineral Depletion: The Case of Lithium
-
Yaksic, A.; Tilton, J. E. Using the Cumulative Availability Curve to Assess the Threat of Mineral Depletion: The Case of Lithium Resour. Policy 2009, 34, 185-194
-
(2009)
Resour. Policy
, vol.34
, pp. 185-194
-
-
Yaksic, A.1
Tilton, J.E.2
-
6
-
-
84873405642
-
Sodium-Ion Batteries
-
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-Ion Batteries Adv. Funct. Mater. 2013, 23, 947-958
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
7
-
-
84857615154
-
Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems
-
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems Energy Environ. Sci. 2012, 5, 5884-5901
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5884-5901
-
-
Palomares, V.1
Serras, P.2
Villaluenga, I.3
Hueso, K.B.4
Carretero-Gonzalez, J.5
Rojo, T.6
-
8
-
-
84882594139
-
Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage
-
Pan, H.; Hu, Y.-S.; Chen, L. Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage Energy Environ. Sci. 2013, 6, 2338-2360
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.-S.2
Chen, L.3
-
9
-
-
84882991556
-
Charge Carriers in Rechargeable Batteries: Na Ions vs. Li Ions
-
Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge Carriers in Rechargeable Batteries: Na Ions vs. Li Ions Energy Environ. Sci. 2013, 6, 2067-2081
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2067-2081
-
-
Hong, S.Y.1
Kim, Y.2
Park, Y.3
Choi, A.4
Choi, N.-S.5
Lee, K.T.6
-
10
-
-
84910649638
-
High-Capacity Anode Materials for Sodium-Ion Batteries
-
Kim, Y.; Ha, K.-H.; Oh, S. M.; Lee, K. T. High-Capacity Anode Materials for Sodium-Ion Batteries Chem.-Eur. J. 2014, 20, 11980-11992
-
(2014)
Chem.-Eur. J.
, vol.20
, pp. 11980-11992
-
-
Kim, Y.1
Ha, K.-H.2
Oh, S.M.3
Lee, K.T.4
-
11
-
-
79960489312
-
Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life
-
Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life Adv. Mater. 2011, 23, 3155-3160
-
(2011)
Adv. Mater.
, vol.23
, pp. 3155-3160
-
-
Cao, Y.1
Xiao, L.2
Wang, W.3
Choi, D.4
Nie, Z.5
Yu, J.6
Saraf, L.V.7
Yang, Z.8
Liu, J.9
-
12
-
-
84862696324
-
2 Made from Earth-Abundant Elements for Rechargeable Na Batteries
-
2 Made From Earth-Abundant Elements for Rechargeable Na Batteries Nat. Mater. 2012, 11, 512-517
-
(2012)
Nat. Mater.
, vol.11
, pp. 512-517
-
-
Yabuuchi, N.1
Kajiyama, M.2
Iwatate, J.3
Nishikawa, H.4
Hitomi, S.5
Okuyama, R.6
Usui, R.7
Yamada, Y.8
Komaba, S.9
-
13
-
-
84869171550
-
4 Nanoparticles Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes
-
4 Nanoparticles Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes Nano Lett. 2012, 12, 5664-5668
-
(2012)
Nano Lett.
, vol.12
, pp. 5664-5668
-
-
Liu, Y.1
Xu, Y.2
Han, X.3
Pellegrinelli, C.4
Zhu, Y.5
Zhu, H.6
Wan, J.7
Chung, A.C.8
Vaaland, O.9
Wang, C.10
Hu, L.11
-
14
-
-
84901922151
-
3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries
-
3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries Adv. Mater. 2014, 26, 3545-3553
-
(2014)
Adv. Mater.
, vol.26
, pp. 3545-3553
-
-
Li, S.1
Dong, Y.2
Xu, L.3
Xu, X.4
He, L.5
Mai, L.6
-
15
-
-
84896971809
-
2@Graphene Film for a Sodium-Ion Battery Cathode
-
2@Graphene Film for a Sodium-Ion Battery Cathode ACS Appl. Mater. Interfaces 2014, 6, 4242-4247
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 4242-4247
-
-
Zhu, H.1
Lee, K.T.2
Hitz, G.T.3
Han, X.4
Li, Y.5
Wan, J.6
Lacey, S.7
Cresce V. A, W.8
Xu, K.9
Wachsman, E.10
Hu, L.11
-
16
-
-
0000209922
-
A Lamellar Compound of Sodium and Graphite
-
Asher, R. C. A Lamellar Compound of Sodium and Graphite J. Inorg. Nucl. Chem. 1959, 10, 238-249
-
(1959)
J. Inorg. Nucl. Chem.
, vol.10
, pp. 238-249
-
-
Asher, R.C.1
-
17
-
-
0024068597
-
Electrochemical Intercalation of Sodium in Graphite
-
Ge, P.; Fouletier, M. Electrochemical Intercalation of Sodium in Graphite Solid State Ionics 1988, 30, 1172-1175
-
(1988)
Solid State Ionics
, vol.30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
18
-
-
84879932419
-
First-Principles Study of Alkali Metal-Graphite Intercalation Compounds
-
Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-Principles Study of Alkali Metal-Graphite Intercalation Compounds J. Power Sources 2013, 243, 585-587
-
(2013)
J. Power Sources
, vol.243
, pp. 585-587
-
-
Nobuhara, K.1
Nakayama, H.2
Nose, M.3
Nakanishi, S.4
Iba, H.5
-
19
-
-
84908143622
-
Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-intercalation Phenomena
-
Jache, B.; Adelhelm, P. Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-intercalation Phenomena Angew. Chem., Int. Ed. 2014, 53, 10169-10173
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 10169-10173
-
-
Jache, B.1
Adelhelm, P.2
-
20
-
-
84862527593
-
High Capacity Na-Storage and Superior Cyclability of Nanocomposite Sb/C Anode for Na-Ion Batteries
-
Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. High Capacity Na-Storage and Superior Cyclability of Nanocomposite Sb/C Anode for Na-Ion Batteries Chem. Commun. 2012, 48, 7070-7072
-
(2012)
Chem. Commun.
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
Wu, L.3
Cao, Y.4
Ai, X.5
Yang, H.6
-
21
-
-
84880816754
-
Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode
-
Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode ACS Nano 2013, 7, 6378-6386
-
(2013)
ACS Nano
, vol.7
, pp. 6378-6386
-
-
Zhu, Y.1
Han, X.2
Xu, Y.3
Liu, Y.4
Zheng, S.5
Xu, K.6
Hu, L.7
Wang, C.8
-
22
-
-
84876516715
-
Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes
-
Liu, Y.; Xu, Y.; Zhu, Y.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes ACS Nano 2013, 7, 3627-3634
-
(2013)
ACS Nano
, vol.7
, pp. 3627-3634
-
-
Liu, Y.1
Xu, Y.2
Zhu, Y.3
Culver, J.N.4
Lundgren, C.A.5
Xu, K.6
Wang, C.7
-
23
-
-
84901684098
-
Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys
-
Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys ACS Nano 2014, 8, 4415-4429
-
(2014)
ACS Nano
, vol.8
, pp. 4415-4429
-
-
Farbod, B.1
Cui, K.2
Kalisvaart, W.P.3
Kupsta, M.4
Zahiri, B.5
Kohandehghan, A.6
Lotfabad, E.M.7
Li, Z.8
Luber, E.J.9
Mitlin, D.10
-
24
-
-
84880166567
-
Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
-
Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir Nano Lett. 2013, 13, 3093-3100
-
(2013)
Nano Lett.
, vol.13
, pp. 3093-3100
-
-
Zhu, H.1
Jia, Z.2
Chen, Y.3
Weadock, N.4
Wan, J.5
Vaaland, O.6
Han, X.7
Li, T.8
Hu, L.9
-
26
-
-
84891672108
-
3 Nanocrystals Anchored onto Graphene Nanosheets as the Anode Material for Low-Cost Sodium-Ion Batteries
-
3 Nanocrystals Anchored onto Graphene Nanosheets as the Anode Material for Low-Cost Sodium-Ion Batteries Chem. Commun. 2014, 50, 1215-1217
-
(2014)
Chem. Commun.
, vol.50
, pp. 1215-1217
-
-
Jian, Z.1
Zhao, B.2
Liu, P.3
Li, F.4
Zheng, M.5
Chen, M.6
Shi, Y.7
Zhou, H.8
-
27
-
-
84876527043
-
2@Graphene Nanocomposites as Anode Materials for Na-Ion Batteries with Superior Electrochemical Performance
-
2@Graphene Nanocomposites as Anode Materials for Na-Ion Batteries with Superior Electrochemical Performance Chem. Commun. 2013, 49, 3131-3133
-
(2013)
Chem. Commun.
, vol.49
, pp. 3131-3133
-
-
Su, D.1
Ahn, H.-J.2
Wang, G.3
-
28
-
-
84890147440
-
High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries
-
DOI
-
Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries. Nat. Commun. 2013, 4, DOI: 10.1038/ncomms3922.
-
(2013)
Nat. Commun.
, vol.4
-
-
Yu, D.Y.W.1
Prikhodchenko, P.V.2
Mason, C.W.3
Batabyal, S.K.4
Gun, J.5
Sladkevich, S.6
Medvedev, A.G.7
Lev, O.8
-
29
-
-
84896732875
-
2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
-
2/Graphene Composite Paper for Sodium-Ion Battery Electrodes ACS Nano 2014, 8, 1759-1770
-
(2014)
ACS Nano
, vol.8
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
30
-
-
84902376682
-
2-Reduced Graphene Oxide Composite - A High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material
-
2-Reduced Graphene Oxide Composite-A High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material Adv. Mater. 2014, 26, 3854-3859
-
(2014)
Adv. Mater.
, vol.26
, pp. 3854-3859
-
-
Qu, B.1
Ma, C.2
Ji, G.3
Xu, C.4
Xu, J.5
Meng, Y.S.6
Wang, T.7
Lee, J.Y.8
-
31
-
-
0027607781
-
Dependence of the Electrochemical Intercalation of Lithium in Carbons on the Crystal Structure of the Carbon
-
Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Dependence of the Electrochemical Intercalation of Lithium in Carbons on The Crystal Structure of the Carbon Electrochim. Acta 1993, 38, 1179-1191
-
(1993)
Electrochim. Acta
, vol.38
, pp. 1179-1191
-
-
Dahn, J.R.1
Sleigh, A.K.2
Shi, H.3
Reimers, J.N.4
Zhong, Q.5
Way, B.M.6
-
32
-
-
11644298091
-
Mechanisms for Lithium Insertion in Carbonaceous Materials
-
Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Mechanisms for Lithium Insertion in Carbonaceous Materials Science 1995, 270, 590-593
-
(1995)
Science
, vol.270
, pp. 590-593
-
-
Dahn, J.R.1
Zheng, T.2
Liu, Y.3
Xue, J.S.4
-
33
-
-
0027710224
-
Electrochemical Insertion of Sodium into Carbon
-
Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. Electrochemical Insertion of Sodium into Carbon J. Electrochem. Soc. 1993, 140, L169-L170
-
(1993)
J. Electrochem. Soc.
, vol.140
, pp. 169-L170
-
-
Doeff, M.M.1
Ma, Y.2
Visco, S.J.3
De Jonghe, L.C.4
-
34
-
-
0033751756
-
High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
-
Stevens, D. A.; Dahn, J. R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries J. Electrochem. Soc. 2000, 147, 1271-1273
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
35
-
-
0009800208
-
The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
-
Stevens, D. A.; Dahn, J. R. The Mechanisms of Lithium and Sodium Insertion in Carbon Materials J. Electrochem. Soc. 2001, 148, A803-A811
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. 803-A811
-
-
Stevens, D.A.1
Dahn, J.R.2
-
36
-
-
0037025882
-
Electrochemical Insertion of Sodium into Hard Carbons
-
Thomas, P.; Billaud, D. Electrochemical Insertion of Sodium into Hard Carbons Electrochim. Acta 2002, 47, 3303-3307
-
(2002)
Electrochim. Acta
, vol.47
, pp. 3303-3307
-
-
Thomas, P.1
Billaud, D.2
-
37
-
-
80052216133
-
Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies
-
Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies Energy Environ. Sci. 2011, 4, 3342-3345
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3342-3345
-
-
Wenzel, S.1
Hara, T.2
Janek, J.3
Adelhelm, P.4
-
38
-
-
84867315537
-
Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-based Batteries
-
Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M.-M.; Antonietti, M.; Maier, J. Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-based Batteries Adv. Energy Mater. 2012, 2, 873-877
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 873-877
-
-
Tang, K.1
Fu, L.2
White, R.J.3
Yu, L.4
Titirici, M.-M.5
Antonietti, M.6
Maier, J.7
-
39
-
-
84872309768
-
Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries
-
Wang, H.; Wu, Z.; Meng, F.; Ma, D.; Huang, X.; Wang, L.; Zhang, X. Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries ChemSusChem 2013, 6, 56-60
-
(2013)
ChemSusChem
, vol.6
, pp. 56-60
-
-
Wang, H.1
Wu, Z.2
Meng, F.3
Ma, D.4
Huang, X.5
Wang, L.6
Zhang, X.7
-
40
-
-
0031996547
-
Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area
-
Winter, M.; Novak, P.; Monnier, A. Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area J. Electrochem. Soc. 1998, 145, 428-436
-
(1998)
J. Electrochem. Soc.
, vol.145
, pp. 428-436
-
-
Winter, M.1
Novak, P.2
Monnier, A.3
-
41
-
-
84901745680
-
Predicting Capacity of Hard Carbon Anodes in Sodium-Ion Batteries Using Porosity Measurements
-
Bommier, C.; Luo, W.; Gao, W.-Y.; Greaney, A.; Ma, S.; Ji, X. Predicting Capacity of Hard Carbon Anodes in Sodium-Ion Batteries Using Porosity Measurements Carbon 2014, 76, 165-174
-
(2014)
Carbon
, vol.76
, pp. 165-174
-
-
Bommier, C.1
Luo, W.2
Gao, W.-Y.3
Greaney, A.4
Ma, S.5
Ji, X.6
-
42
-
-
84904720453
-
Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries
-
Hong, K.; Qie, L.; Zeng, R.; Yi, Z.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.; Zhang, W.; Huang, Y. Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries J. Mater. Chem. A 2014, 2, 12733-12738
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 12733-12738
-
-
Hong, K.1
Qie, L.2
Zeng, R.3
Yi, Z.4
Zhang, W.5
Wang, D.6
Yin, W.7
Wu, C.8
Fan, Q.9
Zhang, W.10
Huang, Y.11
-
43
-
-
0018739724
-
The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model
-
Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model J. Electrochem. Soc. 1979, 126, 2047-2051
-
(1979)
J. Electrochem. Soc.
, vol.126
, pp. 2047-2051
-
-
Peled, E.1
-
44
-
-
0032639894
-
A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells
-
Ein-Eli, Y. A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells Electrochem. Solid-State Lett. 1999, 2, 212-214
-
(1999)
Electrochem. Solid-State Lett.
, vol.2
, pp. 212-214
-
-
Ein-Eli, Y.1
-
45
-
-
0025450991
-
Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
-
Fong, R.; von Sacken, U.; Dahn, J. R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells J. Electrochem. Soc. 1990, 137, 2009-2013
-
(1990)
J. Electrochem. Soc.
, vol.137
, pp. 2009-2013
-
-
Fong, R.1
Von Sacken, U.2
Dahn, J.R.3
-
46
-
-
0035397039
-
Effects of Post-Treatments on the Performance of Hard Carbons in Lithium Cells
-
Chevallier, F.; Gautier, S.; Salvetat, J. P.; Clinard, C.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F. Effects of Post-Treatments on the Performance of Hard Carbons in Lithium Cells J. Power Sources 2001, 98, 143-145
-
(2001)
J. Power Sources
, vol.98
, pp. 143-145
-
-
Chevallier, F.1
Gautier, S.2
Salvetat, J.P.3
Clinard, C.4
Frackowiak, E.5
Rouzaud, J.N.6
Béguin, F.7
-
47
-
-
0037321702
-
Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries
-
Cao, Y.; Xiao, L.; Ai, X.; Yang, H. Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries Electrochem. Solid-State Lett. 2003, 6, A30-A33
-
(2003)
Electrochem. Solid-State Lett.
, vol.6
, pp. 30-A33
-
-
Cao, Y.1
Xiao, L.2
Ai, X.3
Yang, H.4
-
48
-
-
84915811922
-
Amorphous Monodispersed Hard Carbon Micro-Spherules Derived from Biomass as a High Performance Negative Electrode Material for Sodium-Ion Batteries
-
Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Amorphous Monodispersed Hard Carbon Micro-Spherules Derived from Biomass as a High Performance Negative Electrode Material for Sodium-Ion Batteries J. Mater. Chem. A 2015, 3, 71-77
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 71-77
-
-
Li, Y.1
Xu, S.2
Wu, X.3
Yu, J.4
Wang, Y.5
Hu, Y.-S.6
Li, H.7
Chen, L.8
Huang, X.9
-
49
-
-
0033357782
-
Li-Insertion in Hard Carbon Anode Materials for Li-Ion Batteries
-
Buiel, E.; Dahn, J. R. Li-Insertion in Hard Carbon Anode Materials for Li-Ion Batteries Electrochim. Acta 1999, 45, 121-130
-
(1999)
Electrochim. Acta
, vol.45
, pp. 121-130
-
-
Buiel, E.1
Dahn, J.R.2
-
50
-
-
0037448714
-
Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels
-
Al-Muhtaseb, S. A.; Ritter, J. A. Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels Adv. Mater. 2003, 15, 101-114
-
(2003)
Adv. Mater.
, vol.15
, pp. 101-114
-
-
Al-Muhtaseb, S.A.1
Ritter, J.A.2
-
51
-
-
0033730644
-
Carbonization and Activation of Sol-Gel Derived Carbon Xerogels
-
Lin, C.; Ritter, J. A. Carbonization and Activation of Sol-Gel Derived Carbon Xerogels Carbon 2000, 38, 849-861
-
(2000)
Carbon
, vol.38
, pp. 849-861
-
-
Lin, C.1
Ritter, J.A.2
-
52
-
-
84891368521
-
Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
-
Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D. Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes ACS Nano 2013, 7, 11004-11015
-
(2013)
ACS Nano
, vol.7
, pp. 11004-11015
-
-
Ding, J.1
Wang, H.2
Li, Z.3
Kohandehghan, A.4
Cui, K.5
Xu, Z.6
Zahiri, B.7
Tan, X.8
Lotfabad, E.M.9
Olsen, B.C.10
Mitlin, D.11
-
53
-
-
84904720096
-
High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels
-
Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels ACS Nano 2014, 8, 7115-7129
-
(2014)
ACS Nano
, vol.8
, pp. 7115-7129
-
-
Lotfabad, E.M.1
Ding, J.2
Cui, K.3
Kohandehghan, A.4
Kalisvaart, W.P.5
Hazelton, M.6
Mitlin, D.7
-
55
-
-
84886400148
-
Production of Graphene by Reduction Using a Magnesiothermic Reaction
-
Luo, W.; Wang, B.; Wang, X.; Stickle, W. F.; Ji, X. Production of Graphene by Reduction Using a Magnesiothermic Reaction Chem. Commun. 2013, 49, 10676-10678
-
(2013)
Chem. Commun.
, vol.49
, pp. 10676-10678
-
-
Luo, W.1
Wang, B.2
Wang, X.3
Stickle, W.F.4
Ji, X.5
-
56
-
-
84893432552
-
Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates
-
Krishnan, D.; Raidongia, K.; Shao, J.; Huang, J. Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates ACS Nano 2013, 8, 449-457
-
(2013)
ACS Nano
, vol.8
, pp. 449-457
-
-
Krishnan, D.1
Raidongia, K.2
Shao, J.3
Huang, J.4
-
57
-
-
80053332289
-
2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries
-
2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries ACS Nano 2011, 5, 7100-7107
-
(2011)
ACS Nano
, vol.5
, pp. 7100-7107
-
-
Sun, Y.1
Hu, X.2
Luo, W.3
Huang, Y.4
-
58
-
-
77956963862
-
Graphene and Graphene Oxide: Synthesis, Properties, and Applications
-
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications Adv. Mater. 2010, 22, 3906-3924
-
(2010)
Adv. Mater.
, vol.22
, pp. 3906-3924
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
Ruoff, R.S.7
|