-
1
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
-
(2008)
Angew. Chem. Int. Ed
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
2
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935 (2011).
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.M.3
-
3
-
-
84890528665
-
Electrochemical energy storage in a sustainable modern society
-
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14-18 (2013).
-
(2013)
Energy Environ. Sci
, vol.7
, pp. 14-18
-
-
Goodenough, J.B.1
-
4
-
-
76249115189
-
Positive electrode materials for Li-Ion and Li-batteries
-
Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-Ion and Li-batteries. Chem. Mater. 22, 691-714 (2010).
-
(2010)
Chem. Mater
, vol.22
, pp. 691-714
-
-
Ellis, B.L.1
Lee, K.T.2
Nazar, L.F.3
-
5
-
-
84867030978
-
Challenges facing lithium batteries and electrical double-layer capacitors
-
Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994-10024 (2012).
-
(2012)
Angew. Chem. Int. Ed
, vol.51
, pp. 9994-10024
-
-
Choi, N.S.1
-
6
-
-
84889029209
-
Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties
-
Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185-204 (2014).
-
(2014)
Chem. Soc. Rev
, vol.43
, pp. 185-204
-
-
Islam, M.S.1
Fisher, C.A.J.2
-
7
-
-
84878717290
-
Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
-
Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun 4, 1870 (2013).
-
(2013)
Nat. Commun
, vol.4
, pp. 1870
-
-
Sun, Y.1
-
8
-
-
84883289089
-
A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
-
Wang, Y. et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun 4, 2365 (2013).
-
(2013)
Nat. Commun
, vol.4
, pp. 2365
-
-
Wang, Y.1
-
9
-
-
84876544264
-
Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries
-
Jian, Z. L. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater 3, 156-160 (2013).
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 156-160
-
-
Jian, Z.L.1
-
10
-
-
84871285485
-
P2-NaxVO2 system as electrodes for batteries and electroncorrelated materials
-
Guignard, M. et al. P2-NaxVO2 system as electrodes for batteries and electroncorrelated materials. Nat. Mater. 12, 74-80 (2013).
-
(2013)
Nat. Mater
, vol.12
, pp. 74-80
-
-
Guignard, M.1
-
11
-
-
80051759616
-
Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries
-
Lee, K. T., Ramesh, T. N., Nan, F., Botton, G. & Nazar, L. F. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem. Mater. 23, 3593-3600 (2011).
-
(2011)
Chem. Mater
, vol.23
, pp. 3593-3600
-
-
Lee, K.T.1
Ramesh, T.N.2
Nan, F.3
Botton, G.4
Nazar, L.F.5
-
12
-
-
84862175135
-
Prussian blue: A new framework of electrode materials for sodium batteries
-
Lu, Y. H., Wang, L., Cheng, J. G. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544-6546 (2012).
-
(2012)
Chem. Commun
, vol.48
, pp. 6544-6546
-
-
Lu, Y.H.1
Wang, L.2
Cheng, J.G.3
Goodenough, J.B.4
-
13
-
-
84904720096
-
High-density sodium and lithium ion battery anodes from banana peels
-
Lotfabad, E. M. et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115-7129 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 7115-7129
-
-
Lotfabad, E.M.1
-
14
-
-
84902001334
-
Expanded graphite as superior anode for sodium-ion batteries
-
Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun 5, 4033 (2014).
-
(2014)
Nat. Commun
, vol.5
, pp. 4033
-
-
Wen, Y.1
-
15
-
-
84908143622
-
Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena
-
Jache, B. & Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169-10173 (2014).
-
(2014)
Angew. Chem. Int. Ed
, vol.53
, pp. 10169-10173
-
-
Jache, B.1
Adelhelm, P.2
-
16
-
-
84901684098
-
Anodes for sodium ion batteries based on tin-germaniumantimony alloys
-
Farbod, B. et al. Anodes for sodium ion batteries based on tin-germaniumantimony alloys. ACS Nano 8, 4415-4429 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 4415-4429
-
-
Farbod, B.1
-
17
-
-
84874069759
-
Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries
-
Xu, Y. H., Zhu, Y. J., Liu, Y. H. & Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater 3, 128-133 (2013).
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 128-133
-
-
Xu, Y.H.1
Zhu, Y.J.2
Liu, Y.H.3
Wang, C.S.4
-
18
-
-
84890147440
-
High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
-
Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun 4, 2922 (2013).
-
(2013)
Nat. Commun
, vol.4
, pp. 2922
-
-
Yu, D.Y.W.1
-
19
-
-
84890462537
-
Sb-C nanofibers with long cycle life as an anode material for highperformance sodium-ion batteries
-
Wu, L. et al. Sb-C nanofibers with long cycle life as an anode material for highperformance sodium-ion batteries. Energy Environ. Sci. 7, 323-328 (2014).
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 323-328
-
-
Wu, L.1
-
20
-
-
84902376682
-
Layered SnS2-reduced graphene oxide composite-A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
-
Qu, B. et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854-3859 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 3854-3859
-
-
Qu, B.1
-
21
-
-
84896732875
-
MoS2/graphene composite paper for sodium-ion battery electrodes
-
David, L., Bhandavat, R. & Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759-1770 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
22
-
-
84906221073
-
Reversible sodium storage via conversion reaction in MoS2/C composite
-
Wang, Y. et al. Reversible sodium storage via conversion reaction in MoS2/C composite. Chem. Commun. 50, 10730-10733 (2014).
-
(2014)
Chem. Commun
, vol.50
, pp. 10730-10733
-
-
Wang, Y.1
-
23
-
-
84893860567
-
Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
Zhu, C., Mu, X., van Aken, P. A., Yu, Y. & Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152-2156 (2014).
-
(2014)
Angew. Chem. Int. Ed
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
24
-
-
84863691641
-
Sodium terephthalate as an organic anode material for sodium ion batteries
-
Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562-3567 (2012).
-
(2012)
Adv. Mater
, vol.24
, pp. 3562-3567
-
-
Park, Y.1
-
25
-
-
84867652301
-
Sodium insertion in carboxylate based materials and their application in 3.6 v full sodium cells
-
Abouimrane, A. et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 5, 9632-9638 (2012).
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 9632-9638
-
-
Abouimrane, A.1
-
26
-
-
84896377226
-
Advanced Na[Ni0.25Fe0.5Mn0.25] O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage
-
Oh, S.-M. et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett. 14, 1620-1626 (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 1620-1626
-
-
Oh, S.-M.1
-
27
-
-
80054887056
-
Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries
-
Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560-2565 (2011).
-
(2011)
J. Phys. Chem. Lett
, vol.2
, pp. 2560-2565
-
-
Xiong, H.1
Slater, M.D.2
Balasubramanian, M.3
Johnson, C.S.4
Rajh, T.5
-
28
-
-
84894216143
-
Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries
-
Kim, K. T. et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416-422 (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 416-422
-
-
Kim, K.T.1
-
29
-
-
84880556085
-
Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries
-
Huang, J. P. et al. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv 3, 12593-12597 (2013).
-
(2013)
RSC Adv
, vol.3
, pp. 12593-12597
-
-
Huang, J.P.1
-
30
-
-
84878250625
-
High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
-
Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518-522 (2013).
-
(2013)
Nat. Mater
, vol.12
, pp. 518-522
-
-
Augustyn, V.1
-
31
-
-
84864669602
-
High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites
-
Chen, Z. et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319-4327 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 4319-4327
-
-
Chen, Z.1
-
32
-
-
84901375798
-
Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films
-
Yu, P. F., Li, C. L. & Guo, X. X. Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118, 10616-10624 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 10616-10624
-
-
Yu, P.F.1
Li, C.L.2
Guo, X.X.3
-
33
-
-
84904009348
-
Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition
-
Raju, V. et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14, 4119-4124 (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 4119-4124
-
-
Raju, V.1
-
34
-
-
84899863044
-
Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium
-
Gonzalez, J. R., Alcantara, R., Nacimiento, F., Ortiz, G. F. & Tirado, J. L. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm 16, 4602-4609 (2014).
-
(2014)
CrystEngComm
, vol.16
, pp. 4602-4609
-
-
Gonzalez, J.R.1
Alcantara, R.2
Nacimiento, F.3
Ortiz, G.F.4
Tirado, J.L.5
-
35
-
-
80051704551
-
Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries
-
Liu, H. S. et al. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450-3454 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 3450-3454
-
-
Liu, H.S.1
-
36
-
-
84862574009
-
Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries
-
Liu, S. H. et al. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater. 24, 3201-3204 (2012).
-
(2012)
Adv. Mater
, vol.24
, pp. 3201-3204
-
-
Liu, S.H.1
-
37
-
-
84892826808
-
Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries
-
Chen, C. J. et al. Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon N. Y. 69, 302-310 (2014).
-
(2014)
Carbon N. Y.
, vol.69
, pp. 302-310
-
-
Chen, C.J.1
-
38
-
-
84895924041
-
TiO2-B nanosheets/anatase nanocrystals Co-anchored on nanoporous graphene: In situ reduction-hydrolysis synthesis and their superior rate performance as an anode material
-
Chen, C. J. et al. TiO2-B nanosheets/anatase nanocrystals Co-anchored on nanoporous graphene: In situ reduction-hydrolysis synthesis and their superior rate performance as an anode material. Chem. Eur. J 20, 1383-1388 (2014).
-
(2014)
Chem. Eur. J
, vol.20
, pp. 1383-1388
-
-
Chen, C.J.1
-
39
-
-
84858309136
-
Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: Electronic structure and photocatalytic degradation of methylene blue eye
-
Breault, T. M. & Bartlett, B. M. Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue eye. J. Phys. Chem. C 116, 5986-5994 (2012).
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 5986-5994
-
-
Breault, T.M.1
Bartlett, B.M.2
-
40
-
-
84894619574
-
Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries
-
Etacheri, V., Yourey, J. E. & Bartlett, B. M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8, 1491-1499 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 1491-1499
-
-
Etacheri, V.1
Yourey, J.E.2
Bartlett, B.M.3
-
41
-
-
70350273418
-
Lithium insertion and transport in the TiO2-B anode material: A computational study
-
Arrouvel, C., Parker, S. C. & Islam, M. S. Lithium insertion and transport in the TiO2-B anode material: a computational study. Chem. Mater. 21, 4778-4783 (2009).
-
(2009)
Chem. Mater
, vol.21
, pp. 4778-4783
-
-
Arrouvel, C.1
Parker, S.C.2
Islam, M.S.3
-
42
-
-
35648959236
-
First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential
-
Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phy. Rev. B 76, 165435 (2007).
-
(2007)
Phy. Rev. B
, vol.76
, pp. 165435
-
-
Wang, L.1
Zhou, F.2
Meng, Y.S.3
Ceder, G.4
-
43
-
-
84898789931
-
Lithium-ion storage properties of titanium oxide nanosheets
-
Augustyn, V. et al. Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz 1, 219-223 (2014).
-
(2014)
Mater. Horiz
, vol.1
, pp. 219-223
-
-
Augustyn, V.1
-
44
-
-
35548940771
-
Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles
-
Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925-14931 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 14925-14931
-
-
Wang, J.1
Polleux, J.2
Lim, J.3
Dunn, B.4
-
45
-
-
80052193621
-
Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
-
Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680-3688 (2011).
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 3680-3688
-
-
Ong, S.P.1
-
46
-
-
84885194615
-
Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries
-
Pan, H. L. et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater 3, 1186-1194 (2013).
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 1186-1194
-
-
Pan, H.L.1
-
47
-
-
84890810431
-
Anatase TiO2 nanoparticles for high power sodium-ion anodes
-
Wu, L. M., Buchholz, D., Bresser, D., Gomes Chagas, L. & Passerini, S. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 251, 379-385 (2014).
-
(2014)
J. Power Sources
, vol.251
, pp. 379-385
-
-
Wu, L.M.1
Buchholz, D.2
Bresser, D.3
Gomes Chagas, L.4
Passerini, S.5
-
48
-
-
84883863821
-
Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries
-
Xu, Y. et al. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49, 8973-8975 (2013).
-
(2013)
Chem. Commun
, vol.49
, pp. 8973-8975
-
-
Xu, Y.1
-
49
-
-
84862522313
-
TiO2-(B) nanotubes as anodes for lithium batteries: Origin and mitigation of irreversible capacity
-
Brutti, S., Gentili, V., Menard, H., Scrosati, B. & Bruce, P. G. TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater 2, 322-327 (2012).
-
(2012)
Adv. Energy Mater
, vol.2
, pp. 322-327
-
-
Brutti, S.1
Gentili, V.2
Menard, H.3
Scrosati, B.4
Bruce, P.G.5
-
50
-
-
84896482880
-
Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries
-
Cha, H. A., Jeong, H. M. & Kang, J. K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2, 5182-5186 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 5182-5186
-
-
Cha, H.A.1
Jeong, H.M.2
Kang, J.K.3
-
51
-
-
71749098978
-
An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals
-
Yang, D. J. et al. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 131, 17885-17893 (2009).
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 17885-17893
-
-
Yang, D.J.1
-
52
-
-
0031234193
-
Li+ ion insertion in TiO2 (anatase) 2. Voltammetry on nanoporous films
-
Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717-7722 (1997).
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 7717-7722
-
-
Lindström, H.1
-
53
-
-
79961238929
-
Effect of concentration on the energetics and dynamics of Li ion transport in anatase and amorphous TiO2
-
Yildirim, H., Greeley, J. & Sankaranarayanan, S. K. R. S. Effect of concentration on the energetics and dynamics of Li ion transport in anatase and amorphous TiO2. J. Phys. Chem. C 115, 15661-15673 (2011).
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 15661-15673
-
-
Yildirim, H.1
Greeley, J.2
Sankaranarayanan, S.K.R.S.3
-
54
-
-
33947461960
-
Preparation of graphitic oxide
-
Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339-1339 (1958).
-
(1958)
J. Am. Chem. Soc
, vol.80
, pp. 1339-1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
55
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
Furthmüller, J.2
-
56
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
-
(1996)
Phys. Rev. Lett
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
57
-
-
0001486791
-
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
-
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505-1509 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1505-1509
-
-
Dudarev, S.L.1
Botton, G.A.2
Savrasov, S.Y.3
Humphreys, C.J.4
Sutton, A.P.5
-
58
-
-
0034513054
-
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
-
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901-9904 (2000).
-
(2000)
J. Chem. Phys
, vol.113
, pp. 9901-9904
-
-
Henkelman, G.1
Uberuaga, B.P.2
Jónsson, H.3
|