메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHENE; GRAPHENE COUPLED TITANIUM OXIDE; NANOCOMPOSITE; SODIUM; TITANIUM DIOXIDE; UNCLASSIFIED DRUG;

EID: 84928803185     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms7929     Document Type: Article
Times cited : (1075)

References (58)
  • 1
    • 49649105634 scopus 로고    scopus 로고
    • Nanomaterials for rechargeable lithium batteries
    • Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
    • (2008) Angew. Chem. Int. Ed , vol.47 , pp. 2930-2946
    • Bruce, P.G.1    Scrosati, B.2    Tarascon, J.M.3
  • 2
    • 81555207951 scopus 로고    scopus 로고
    • Electrical energy storage for the grid: A battery of choices
    • Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935 (2011).
    • (2011) Science , vol.334 , pp. 928-935
    • Dunn, B.1    Kamath, H.2    Tarascon, J.M.3
  • 3
    • 84890528665 scopus 로고    scopus 로고
    • Electrochemical energy storage in a sustainable modern society
    • Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14-18 (2013).
    • (2013) Energy Environ. Sci , vol.7 , pp. 14-18
    • Goodenough, J.B.1
  • 4
    • 76249115189 scopus 로고    scopus 로고
    • Positive electrode materials for Li-Ion and Li-batteries
    • Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-Ion and Li-batteries. Chem. Mater. 22, 691-714 (2010).
    • (2010) Chem. Mater , vol.22 , pp. 691-714
    • Ellis, B.L.1    Lee, K.T.2    Nazar, L.F.3
  • 5
    • 84867030978 scopus 로고    scopus 로고
    • Challenges facing lithium batteries and electrical double-layer capacitors
    • Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994-10024 (2012).
    • (2012) Angew. Chem. Int. Ed , vol.51 , pp. 9994-10024
    • Choi, N.S.1
  • 6
    • 84889029209 scopus 로고    scopus 로고
    • Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties
    • Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185-204 (2014).
    • (2014) Chem. Soc. Rev , vol.43 , pp. 185-204
    • Islam, M.S.1    Fisher, C.A.J.2
  • 7
    • 84878717290 scopus 로고    scopus 로고
    • Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
    • Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun 4, 1870 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 1870
    • Sun, Y.1
  • 8
    • 84883289089 scopus 로고    scopus 로고
    • A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
    • Wang, Y. et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun 4, 2365 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 2365
    • Wang, Y.1
  • 9
    • 84876544264 scopus 로고    scopus 로고
    • Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries
    • Jian, Z. L. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater 3, 156-160 (2013).
    • (2013) Adv. Energy Mater , vol.3 , pp. 156-160
    • Jian, Z.L.1
  • 10
    • 84871285485 scopus 로고    scopus 로고
    • P2-NaxVO2 system as electrodes for batteries and electroncorrelated materials
    • Guignard, M. et al. P2-NaxVO2 system as electrodes for batteries and electroncorrelated materials. Nat. Mater. 12, 74-80 (2013).
    • (2013) Nat. Mater , vol.12 , pp. 74-80
    • Guignard, M.1
  • 11
    • 80051759616 scopus 로고    scopus 로고
    • Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries
    • Lee, K. T., Ramesh, T. N., Nan, F., Botton, G. & Nazar, L. F. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem. Mater. 23, 3593-3600 (2011).
    • (2011) Chem. Mater , vol.23 , pp. 3593-3600
    • Lee, K.T.1    Ramesh, T.N.2    Nan, F.3    Botton, G.4    Nazar, L.F.5
  • 12
    • 84862175135 scopus 로고    scopus 로고
    • Prussian blue: A new framework of electrode materials for sodium batteries
    • Lu, Y. H., Wang, L., Cheng, J. G. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544-6546 (2012).
    • (2012) Chem. Commun , vol.48 , pp. 6544-6546
    • Lu, Y.H.1    Wang, L.2    Cheng, J.G.3    Goodenough, J.B.4
  • 13
    • 84904720096 scopus 로고    scopus 로고
    • High-density sodium and lithium ion battery anodes from banana peels
    • Lotfabad, E. M. et al. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115-7129 (2014).
    • (2014) ACS Nano , vol.8 , pp. 7115-7129
    • Lotfabad, E.M.1
  • 14
    • 84902001334 scopus 로고    scopus 로고
    • Expanded graphite as superior anode for sodium-ion batteries
    • Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun 5, 4033 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 4033
    • Wen, Y.1
  • 15
    • 84908143622 scopus 로고    scopus 로고
    • Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena
    • Jache, B. & Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169-10173 (2014).
    • (2014) Angew. Chem. Int. Ed , vol.53 , pp. 10169-10173
    • Jache, B.1    Adelhelm, P.2
  • 16
    • 84901684098 scopus 로고    scopus 로고
    • Anodes for sodium ion batteries based on tin-germaniumantimony alloys
    • Farbod, B. et al. Anodes for sodium ion batteries based on tin-germaniumantimony alloys. ACS Nano 8, 4415-4429 (2014).
    • (2014) ACS Nano , vol.8 , pp. 4415-4429
    • Farbod, B.1
  • 17
    • 84874069759 scopus 로고    scopus 로고
    • Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries
    • Xu, Y. H., Zhu, Y. J., Liu, Y. H. & Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater 3, 128-133 (2013).
    • (2013) Adv. Energy Mater , vol.3 , pp. 128-133
    • Xu, Y.H.1    Zhu, Y.J.2    Liu, Y.H.3    Wang, C.S.4
  • 18
    • 84890147440 scopus 로고    scopus 로고
    • High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
    • Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun 4, 2922 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 2922
    • Yu, D.Y.W.1
  • 19
    • 84890462537 scopus 로고    scopus 로고
    • Sb-C nanofibers with long cycle life as an anode material for highperformance sodium-ion batteries
    • Wu, L. et al. Sb-C nanofibers with long cycle life as an anode material for highperformance sodium-ion batteries. Energy Environ. Sci. 7, 323-328 (2014).
    • (2014) Energy Environ. Sci , vol.7 , pp. 323-328
    • Wu, L.1
  • 20
    • 84902376682 scopus 로고    scopus 로고
    • Layered SnS2-reduced graphene oxide composite-A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
    • Qu, B. et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854-3859 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 3854-3859
    • Qu, B.1
  • 21
    • 84896732875 scopus 로고    scopus 로고
    • MoS2/graphene composite paper for sodium-ion battery electrodes
    • David, L., Bhandavat, R. & Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759-1770 (2014).
    • (2014) ACS Nano , vol.8 , pp. 1759-1770
    • David, L.1    Bhandavat, R.2    Singh, G.3
  • 22
    • 84906221073 scopus 로고    scopus 로고
    • Reversible sodium storage via conversion reaction in MoS2/C composite
    • Wang, Y. et al. Reversible sodium storage via conversion reaction in MoS2/C composite. Chem. Commun. 50, 10730-10733 (2014).
    • (2014) Chem. Commun , vol.50 , pp. 10730-10733
    • Wang, Y.1
  • 23
    • 84893860567 scopus 로고    scopus 로고
    • Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
    • Zhu, C., Mu, X., van Aken, P. A., Yu, Y. & Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53, 2152-2156 (2014).
    • (2014) Angew. Chem. Int. Ed , vol.53 , pp. 2152-2156
    • Zhu, C.1    Mu, X.2    Van Aken, P.A.3    Yu, Y.4    Maier, J.5
  • 24
    • 84863691641 scopus 로고    scopus 로고
    • Sodium terephthalate as an organic anode material for sodium ion batteries
    • Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562-3567 (2012).
    • (2012) Adv. Mater , vol.24 , pp. 3562-3567
    • Park, Y.1
  • 25
    • 84867652301 scopus 로고    scopus 로고
    • Sodium insertion in carboxylate based materials and their application in 3.6 v full sodium cells
    • Abouimrane, A. et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 5, 9632-9638 (2012).
    • (2012) Energy Environ. Sci , vol.5 , pp. 9632-9638
    • Abouimrane, A.1
  • 26
    • 84896377226 scopus 로고    scopus 로고
    • Advanced Na[Ni0.25Fe0.5Mn0.25] O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage
    • Oh, S.-M. et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett. 14, 1620-1626 (2014).
    • (2014) Nano Lett , vol.14 , pp. 1620-1626
    • Oh, S.-M.1
  • 28
    • 84894216143 scopus 로고    scopus 로고
    • Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries
    • Kim, K. T. et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416-422 (2014).
    • (2014) Nano Lett , vol.14 , pp. 416-422
    • Kim, K.T.1
  • 29
    • 84880556085 scopus 로고    scopus 로고
    • Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries
    • Huang, J. P. et al. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv 3, 12593-12597 (2013).
    • (2013) RSC Adv , vol.3 , pp. 12593-12597
    • Huang, J.P.1
  • 30
    • 84878250625 scopus 로고    scopus 로고
    • High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
    • Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518-522 (2013).
    • (2013) Nat. Mater , vol.12 , pp. 518-522
    • Augustyn, V.1
  • 31
    • 84864669602 scopus 로고    scopus 로고
    • High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites
    • Chen, Z. et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319-4327 (2012).
    • (2012) ACS Nano , vol.6 , pp. 4319-4327
    • Chen, Z.1
  • 32
    • 84901375798 scopus 로고    scopus 로고
    • Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films
    • Yu, P. F., Li, C. L. & Guo, X. X. Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118, 10616-10624 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 10616-10624
    • Yu, P.F.1    Li, C.L.2    Guo, X.X.3
  • 33
    • 84904009348 scopus 로고    scopus 로고
    • Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition
    • Raju, V. et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14, 4119-4124 (2014).
    • (2014) Nano Lett , vol.14 , pp. 4119-4124
    • Raju, V.1
  • 34
    • 84899863044 scopus 로고    scopus 로고
    • Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium
    • Gonzalez, J. R., Alcantara, R., Nacimiento, F., Ortiz, G. F. & Tirado, J. L. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm 16, 4602-4609 (2014).
    • (2014) CrystEngComm , vol.16 , pp. 4602-4609
    • Gonzalez, J.R.1    Alcantara, R.2    Nacimiento, F.3    Ortiz, G.F.4    Tirado, J.L.5
  • 35
    • 80051704551 scopus 로고    scopus 로고
    • Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries
    • Liu, H. S. et al. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450-3454 (2011).
    • (2011) Adv. Mater , vol.23 , pp. 3450-3454
    • Liu, H.S.1
  • 36
    • 84862574009 scopus 로고    scopus 로고
    • Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries
    • Liu, S. H. et al. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater. 24, 3201-3204 (2012).
    • (2012) Adv. Mater , vol.24 , pp. 3201-3204
    • Liu, S.H.1
  • 37
    • 84892826808 scopus 로고    scopus 로고
    • Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries
    • Chen, C. J. et al. Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon N. Y. 69, 302-310 (2014).
    • (2014) Carbon N. Y. , vol.69 , pp. 302-310
    • Chen, C.J.1
  • 38
    • 84895924041 scopus 로고    scopus 로고
    • TiO2-B nanosheets/anatase nanocrystals Co-anchored on nanoporous graphene: In situ reduction-hydrolysis synthesis and their superior rate performance as an anode material
    • Chen, C. J. et al. TiO2-B nanosheets/anatase nanocrystals Co-anchored on nanoporous graphene: In situ reduction-hydrolysis synthesis and their superior rate performance as an anode material. Chem. Eur. J 20, 1383-1388 (2014).
    • (2014) Chem. Eur. J , vol.20 , pp. 1383-1388
    • Chen, C.J.1
  • 39
    • 84858309136 scopus 로고    scopus 로고
    • Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: Electronic structure and photocatalytic degradation of methylene blue eye
    • Breault, T. M. & Bartlett, B. M. Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue eye. J. Phys. Chem. C 116, 5986-5994 (2012).
    • (2012) J. Phys. Chem. C , vol.116 , pp. 5986-5994
    • Breault, T.M.1    Bartlett, B.M.2
  • 40
    • 84894619574 scopus 로고    scopus 로고
    • Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries
    • Etacheri, V., Yourey, J. E. & Bartlett, B. M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8, 1491-1499 (2014).
    • (2014) ACS Nano , vol.8 , pp. 1491-1499
    • Etacheri, V.1    Yourey, J.E.2    Bartlett, B.M.3
  • 41
    • 70350273418 scopus 로고    scopus 로고
    • Lithium insertion and transport in the TiO2-B anode material: A computational study
    • Arrouvel, C., Parker, S. C. & Islam, M. S. Lithium insertion and transport in the TiO2-B anode material: a computational study. Chem. Mater. 21, 4778-4783 (2009).
    • (2009) Chem. Mater , vol.21 , pp. 4778-4783
    • Arrouvel, C.1    Parker, S.C.2    Islam, M.S.3
  • 42
    • 35648959236 scopus 로고    scopus 로고
    • First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential
    • Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phy. Rev. B 76, 165435 (2007).
    • (2007) Phy. Rev. B , vol.76 , pp. 165435
    • Wang, L.1    Zhou, F.2    Meng, Y.S.3    Ceder, G.4
  • 43
    • 84898789931 scopus 로고    scopus 로고
    • Lithium-ion storage properties of titanium oxide nanosheets
    • Augustyn, V. et al. Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz 1, 219-223 (2014).
    • (2014) Mater. Horiz , vol.1 , pp. 219-223
    • Augustyn, V.1
  • 44
    • 35548940771 scopus 로고    scopus 로고
    • Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles
    • Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925-14931 (2007).
    • (2007) J. Phys. Chem. C , vol.111 , pp. 14925-14931
    • Wang, J.1    Polleux, J.2    Lim, J.3    Dunn, B.4
  • 45
    • 80052193621 scopus 로고    scopus 로고
    • Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
    • Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680-3688 (2011).
    • (2011) Energy Environ. Sci , vol.4 , pp. 3680-3688
    • Ong, S.P.1
  • 46
    • 84885194615 scopus 로고    scopus 로고
    • Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries
    • Pan, H. L. et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater 3, 1186-1194 (2013).
    • (2013) Adv. Energy Mater , vol.3 , pp. 1186-1194
    • Pan, H.L.1
  • 48
    • 84883863821 scopus 로고    scopus 로고
    • Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries
    • Xu, Y. et al. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49, 8973-8975 (2013).
    • (2013) Chem. Commun , vol.49 , pp. 8973-8975
    • Xu, Y.1
  • 49
    • 84862522313 scopus 로고    scopus 로고
    • TiO2-(B) nanotubes as anodes for lithium batteries: Origin and mitigation of irreversible capacity
    • Brutti, S., Gentili, V., Menard, H., Scrosati, B. & Bruce, P. G. TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater 2, 322-327 (2012).
    • (2012) Adv. Energy Mater , vol.2 , pp. 322-327
    • Brutti, S.1    Gentili, V.2    Menard, H.3    Scrosati, B.4    Bruce, P.G.5
  • 50
    • 84896482880 scopus 로고    scopus 로고
    • Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries
    • Cha, H. A., Jeong, H. M. & Kang, J. K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J. Mater. Chem. A 2, 5182-5186 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 5182-5186
    • Cha, H.A.1    Jeong, H.M.2    Kang, J.K.3
  • 51
    • 71749098978 scopus 로고    scopus 로고
    • An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals
    • Yang, D. J. et al. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 131, 17885-17893 (2009).
    • (2009) J. Am. Chem. Soc , vol.131 , pp. 17885-17893
    • Yang, D.J.1
  • 52
    • 0031234193 scopus 로고    scopus 로고
    • Li+ ion insertion in TiO2 (anatase) 2. Voltammetry on nanoporous films
    • Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717-7722 (1997).
    • (1997) J. Phys. Chem. B , vol.101 , pp. 7717-7722
    • Lindström, H.1
  • 53
    • 79961238929 scopus 로고    scopus 로고
    • Effect of concentration on the energetics and dynamics of Li ion transport in anatase and amorphous TiO2
    • Yildirim, H., Greeley, J. & Sankaranarayanan, S. K. R. S. Effect of concentration on the energetics and dynamics of Li ion transport in anatase and amorphous TiO2. J. Phys. Chem. C 115, 15661-15673 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 15661-15673
    • Yildirim, H.1    Greeley, J.2    Sankaranarayanan, S.K.R.S.3
  • 54
    • 33947461960 scopus 로고
    • Preparation of graphitic oxide
    • Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339-1339 (1958).
    • (1958) J. Am. Chem. Soc , vol.80 , pp. 1339-1339
    • Hummers, W.S.1    Offeman, R.E.2
  • 55
    • 2442537377 scopus 로고    scopus 로고
    • Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 11169-11186
    • Kresse, G.1    Furthmüller, J.2
  • 56
    • 4243943295 scopus 로고    scopus 로고
    • Generalized gradient approximation made simple
    • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
    • (1996) Phys. Rev. Lett , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 57
    • 0001486791 scopus 로고    scopus 로고
    • Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
    • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505-1509 (1998).
    • (1998) Phys. Rev. B , vol.57 , pp. 1505-1509
    • Dudarev, S.L.1    Botton, G.A.2    Savrasov, S.Y.3    Humphreys, C.J.4    Sutton, A.P.5
  • 58
    • 0034513054 scopus 로고    scopus 로고
    • A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901-9904 (2000).
    • (2000) J. Chem. Phys , vol.113 , pp. 9901-9904
    • Henkelman, G.1    Uberuaga, B.P.2    Jónsson, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.