메뉴 건너뛰기




Volumn 112, Issue , 2016, Pages 3402-3412

Analysis of consumer choice for low-carbon technologies by using neural networks

Author keywords

Artificial neural network; Consumer choice; Low carbon technology

Indexed keywords

CARBON; DECISION MAKING; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84958106702     PISSN: 09596526     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jclepro.2015.10.035     Document Type: Article
Times cited : (29)

References (35)
  • 1
    • 0040805937 scopus 로고    scopus 로고
    • Consumer concern, knowledge, belief, and attitude toward renewable energy: An application of the reasoned action theory
    • Bang, H.K., Ellinger, A.E., Hadjimarcou, J., Traichal, P.A., 2000. Consumer concern, knowledge, belief, and attitude toward renewable energy: an application of the reasoned action theory. Psychol. Mark. 17, 449-468.
    • (2000) Psychol. Mark. , vol.17 , pp. 449-468
    • Bang, H.K.1    Ellinger, A.E.2    Hadjimarcou, J.3    Traichal, P.A.4
  • 3
    • 0003487601 scopus 로고    scopus 로고
    • Technical Report Aston University, UK. (accessed 03.04.13.)
    • Bishop, C.M., 1996. Neural Network: a Pattern Recognition Perspective. Technical Report NCRG/96/001. Aston University, UK. Available from: www.ncrg.aston.ac.uk (accessed 03.04.13.).
    • (1996) Neural Network: A Pattern Recognition Perspective
    • Bishop, C.M.1
  • 4
    • 77955847236 scopus 로고    scopus 로고
    • Neural network applications in consumer behaviour
    • Briesch, R., Rajagopal, P., 2010. Neural network applications in consumer behaviour. J. Consum. Psychol. 20, 381-389.
    • (2010) J. Consum. Psychol. , vol.20 , pp. 381-389
    • Briesch, R.1    Rajagopal, P.2
  • 6
    • 60249090242 scopus 로고    scopus 로고
    • Prediction of building energy consumption by using artificial neural networks
    • Ekici, B.B., Aksoy, U.T., 2009. Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 40 (5), 356-362.
    • (2009) Adv. Eng. Softw. , vol.40 , Issue.5 , pp. 356-362
    • Ekici, B.B.1    Aksoy, U.T.2
  • 7
    • 34248591738 scopus 로고    scopus 로고
    • Towards a contemporary approach for understanding consumer behaviour in the context of domestic energy use
    • Faiers, A., Cook, M., Neame, C., 2007. Towards a contemporary approach for understanding consumer behaviour in the context of domestic energy use. Energy Policy 35, 4381-4390.
    • (2007) Energy Policy , vol.35 , pp. 4381-4390
    • Faiers, A.1    Cook, M.2    Neame, C.3
  • 9
    • 0012715994 scopus 로고    scopus 로고
    • Estimation of posterior probabilities of consumer situational choices with neural network classifiers
    • Hu, M.Y., Shanker, M., Hung, M.S., 1999. Estimation of posterior probabilities of consumer situational choices with neural network classifiers. Int. J. Res. Mark. 16 (4), 307-317.
    • (1999) Int. J. Res. Mark. , vol.16 , Issue.4 , pp. 307-317
    • Hu, M.Y.1    Shanker, M.2    Hung, M.S.3
  • 10
    • 13944254815 scopus 로고    scopus 로고
    • International Energy Agency
    • IEA, 2012. World Energy Outlook. International Energy Agency.
    • (2012) World Energy Outlook
    • IEA1
  • 12
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy systems a review
    • Kalogirou, S.A., 1999. Applications of artificial neural networks in energy systems a review. J. Energy Convers. Manag. 40 (10), 1073-1087.
    • (1999) J. Energy Convers. Manag. , vol.40 , Issue.10 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 13
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural-networks for energy systems
    • Kalogirou, S.A., 2000. Applications of artificial neural-networks for energy systems. Appl. Energy 67 (1-2), 17-35.
    • (2000) Appl. Energy , vol.67 , Issue.1-2 , pp. 17-35
    • Kalogirou, S.A.1
  • 14
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy
    • Kalogirou, S.A., 2001. Artificial neural networks in renewable energy. Renew. Sustain. Energy Rev. 5 (4), 373-401.
    • (2001) Renew. Sustain. Energy Rev. , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 15
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • Kalogirou, S., Bojic, M., 2000. Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 25 (5), 479-491.
    • (2000) Energy , vol.25 , Issue.5 , pp. 479-491
    • Kalogirou, S.1    Bojic, M.2
  • 16
    • 84873960577 scopus 로고    scopus 로고
    • A study on the implementation of renewable heating technologies in the domestic sector in Ireland with implications on consumers' decision-making
    • Kennedy, M., Basu, B., 2013a. A study on the implementation of renewable heating technologies in the domestic sector in Ireland with implications on consumers' decision-making. J. Clean. Prod. 44, 133-142.
    • (2013) J. Clean. Prod. , vol.44 , pp. 133-142
    • Kennedy, M.1    Basu, B.2
  • 17
    • 84880295312 scopus 로고    scopus 로고
    • Overcoming barriers to low carbon technology transfer and deployment: An exploration of the impact of projects in developing and emerging economies
    • Kennedy, M., Basu, B., 2013b. Overcoming barriers to low carbon technology transfer and deployment: an exploration of the impact of projects in developing and emerging economies. Renew. Sustain. Energy Rev. 26, 685-693.
    • (2013) Renew. Sustain. Energy Rev. , vol.26 , pp. 685-693
    • Kennedy, M.1    Basu, B.2
  • 18
    • 84975873902 scopus 로고    scopus 로고
    • Prognostication of environmental indices in potato production using artificial neural networks
    • Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., Sefeedpari, P., 2013. Prognostication of environmental indices in potato production using artificial neural networks. J. Clean. Prod. 52, 402-409.
    • (2013) J. Clean. Prod. , vol.52 , pp. 402-409
    • Khoshnevisan, B.1    Rafiee, S.2    Omid, M.3    Mousazadeh, H.4    Sefeedpari, P.5
  • 19
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Mag. 4-22.
    • (1987) IEEE ASSP Mag. , pp. 4-22
    • Lippmann, R.P.1
  • 20
    • 84958105799 scopus 로고    scopus 로고
    • The MathWorks, Inc., Natick, United States. Release
    • MATLAB and Neural Network Toolbox, 2011. The MathWorks, Inc., Natick, United States. Release.
    • (2011) MATLAB and Neural Network Toolbox
  • 21
    • 84873117126 scopus 로고    scopus 로고
    • Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector
    • Morrissey, J., Meyrick, B., Sivaraman, D., Horne, R.E., Berry, M., 2013. Cost-benefit assessment of energy efficiency investments: accounting for future resources, savings and risks in the Australian residential sector. Energy Policy 54, 148-159.
    • (2013) Energy Policy , vol.54 , pp. 148-159
    • Morrissey, J.1    Meyrick, B.2    Sivaraman, D.3    Horne, R.E.4    Berry, M.5
  • 22
    • 80054801679 scopus 로고    scopus 로고
    • Modelling UK domestic energy and carbon emissions: An agent based approach
    • Natarajan, S., Padget, Elliott, L., 2011. Modelling UK domestic energy and carbon emissions: an agent based approach. Energy Build. 43, 2602-2612.
    • (2011) Energy Build , vol.43 , pp. 2602-2612
    • Natarajan, S.1    Padget2    Elliott, L.3
  • 23
    • 84871429862 scopus 로고    scopus 로고
    • A support strategy for the promotion of photovoltaic uses for residential houses in Korea
    • Oh, S.-D., Lee, Y.J., Yoo, Y.P., Kim, J., Kim, S., Song, S.J., Kwak, H.-Y., 2013. A support strategy for the promotion of photovoltaic uses for residential houses in Korea. Energy Policy 53, 248-256.
    • (2013) Energy Policy , vol.53 , pp. 248-256
    • Oh, S.-D.1    Lee, Y.J.2    Yoo, Y.P.3    Kim, J.4    Kim, S.5    Song, S.J.6    Kwak, H.-Y.7
  • 24
    • 39049144780 scopus 로고    scopus 로고
    • Neural network model for database marketing in the new global economy
    • Rao, C.P., Ali, J., 2002. Neural network model for database marketing in the new global economy. Mark. Intell. Plan. 20 (1), 35-43.
    • (2002) Mark. Intell. Plan. , vol.20 , Issue.1 , pp. 35-43
    • Rao, C.P.1    Ali, J.2
  • 25
    • 16244386248 scopus 로고    scopus 로고
    • A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models
    • Razi, M.A., Athappilly, K., 2005. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst. Appl. 29, 65-74.
    • (2005) Expert Syst. Appl. , vol.29 , pp. 65-74
    • Razi, M.A.1    Athappilly, K.2
  • 26
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B.D., 1994. Neural networks and related methods for classification. J. R. Stat. Soc. 56 (3), 409-456.
    • (1994) J. R. Stat. Soc. , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 28
    • 84977315121 scopus 로고
    • Blind spots in policy analysis: What economics doesn't say about energy use
    • Stern, P.C., 1986. Blind spots in policy analysis: what economics doesn't say about energy use. J. Policy Anal. Manag. 5, 200-227.
    • (1986) J. Policy Anal. Manag. , vol.5 , pp. 200-227
    • Stern, P.C.1
  • 29
    • 84879905692 scopus 로고    scopus 로고
    • Objectives, barriers and occasions for energy efficient refurbishment by private homeowners
    • Stieb, I., Dunkelberg, E., 2012. Objectives, barriers and occasions for energy efficient refurbishment by private homeowners. J. Clean. Prod. http://dx.doi.org/10.1016/J.Jclepro.2012.09.041.
    • (2012) J. Clean. Prod.
    • Stieb, I.1    Dunkelberg, E.2
  • 31
    • 84925350752 scopus 로고    scopus 로고
    • Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network
    • Taghavifar, H., Mardani, A., 2015. Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network. J. Clean. Prod. 87, 159-167.
    • (2015) J. Clean. Prod. , vol.87 , pp. 159-167
    • Taghavifar, H.1    Mardani, A.2
  • 33
    • 84876346473 scopus 로고    scopus 로고
    • Public attitudes to climate change and carbon mitigation - Implications for energy-associated behaviours
    • Von Borgstede, C., Andersson, M., Johnsson, P., 2013. Public attitudes to climate change and carbon mitigation - implications for energy-associated behaviours. Energy Policy 57, 182-193.
    • (2013) Energy Policy , vol.57 , pp. 182-193
    • Von Borgstede, C.1    Andersson, M.2    Johnsson, P.3
  • 34
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner, B., Misra, M., 1996. Understanding neural networks as statistical tools. Am. Stat. 50 (4), 284-293.
    • (1996) Am. Stat. , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 35
    • 0031283672 scopus 로고    scopus 로고
    • A comparative analysis of neural networks and statistical methods for predicting consumer choice
    • West, P.M., Brockett, P.L., Golden, L.L., 1997. A comparative analysis of neural networks and statistical methods for predicting consumer choice. Mark. Sci. 16 (4), 370-391.
    • (1997) Mark. Sci. , vol.16 , Issue.4 , pp. 370-391
    • West, P.M.1    Brockett, P.L.2    Golden, L.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.